• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 16
  • 16
  • 9
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PERFORMANCE AND ENVIRONMENTAL IMPACT ASSESSMENT OF PULSE DETONATION BASED ENGINE SYSTEMS

GLASER, AARON J. 02 July 2007 (has links)
No description available.
2

EXPERIMENTAL INVESTIGATION OF SHOCK TRANSFER AND SHOCK INITIATED DETONATION IN A DUAL PULSE DETONATION ENGINE CROSSOVER SYSTEM

Driscoll, Robert B. 21 October 2013 (has links)
No description available.
3

A NUMERICAL STUDY OF DETONATION AND PLUME DYNAMICS IN A PULSED DETONATION ENGINE

RAGHUPATHY, ARUN PRAKASH 28 September 2005 (has links)
No description available.
4

Detonation Initiation in a Pulse Detonation Engine with Elevated Initial Pressures

Naples, Andrew G. 05 September 2008 (has links)
No description available.
5

Methods of Diffusing Pulse Detonation Combustion

Janka, Adam Martin 29 June 2014 (has links)
Pulse detonation combustion has been of interest for many years since it offers several advantages over standard deflagrative combustion. In theory, detonative combustion is a better use of fuel compared to deflagrative combustion since less entropy is generated during a detonation. As a result, detonation offers higher pressure and temperature gain across the wave front compared to the comparable deflagration. Since a detonation is a supersonic event which uses a shock to compress and dissociate reactants, a Pulse Detonation Combustor (PDC) is a relatively simple device that does not necessarily require a large compressor section at the inlet. Despite these benefits, using a turbine to extract work from a PDC is a problem littered with technical challenges. A PDC necessarily operates cyclically, producing highly transient pressure and temperature fields. This cyclic operation presents concerns with regards to turbine reliability and effective work extraction. The research presented here investigated the implementation of a pulse detonation diffuser, a device intended to temporally and spatially distribute the energy produced during a detonation pulse. This device would be an inert extension from a baseline PDC, manipulating the decaying detonation front while minimizing entropy production. A diffuser will seek to elongate, steady, attenuate, and maintain the quality of energy contained in the exhaust of a detonation pulse. These functions intend to reduce stresses introduced to a turbine and aid in effective work extraction. The goal of this research was to design, implement, and evaluate such a diffuser using the using conventional analysis and simulated and physical experimentation. Diffuser concepts using various wave dynamic mechanisms were generated. Analytical models were developed to estimate basic timing and wave attenuation parameters for a given design. These models served to inform the detail design process, providing an idea for geometric scale for a diffuser. Designs were simulated in ANSYS Fluent. The simulated performance of each diffuser was measured using metrics quantifying the wave attenuation, pulse elongation, pulse steadying, and entropy generation for each design. The most promising diffuser was fabricated and tested using a detonation tube. Diffuser performance was compared against analytical and computational models using dynamic pressure transducer diagnostics. / Master of Science
6

Direct-connect performance evaluation of a valveless pulse detonation engine

Wittmers, Nicole K. 12 1900 (has links)
Approved for public release, distribution is unlimited / Operational characteristics of a valveless pulse detonation engine system were characterized by experimental measurements of thrust, fuel flow, and internal gas dynamics. The multi-cycle detonation experiments were performed on an axis-symmetric engine geometry operating on an ethylene/air mixtures. The detonation diffraction process from a small 'initiator' combustor to a larger diameter main combustor in a continuous airflow configuration was evaluated during multi-cycle operation of a pulse detonation engine and was found to be very successful at initiating combustion of the secondary fuel/air mixture at high frequencies. The configuration was used to demonstrate the benefit of generating an overdriven detonation condition near the diffraction plane for enhanced transmission of the larger combustor. Results have shown that the addition of optical sensors, such as tunable diode lasers, to provide fuel profile data are invaluable for providing high fidelity performance results. The performance results demonstrated the ability of the valveless pulse detonation engine to run at efficiencies similar to valved pulse detonation engine geometries and may be a low cost alternative to conventional air-breathing propulsion systems. / Funded By: N00014OWR20226. / Lieutenant, United States Navy
7

Numerical modelling of pressure rise combustion for reducing emissions of future civil aircraft

Materano Blanco, Gilberto Ignacio January 2014 (has links)
This work assesses the feasibility of designing and implementing the wave rotor (WR), the pulse detonation engine (PDE) and the internal combustion wave rotor (ICWR) as part of novel Brayton cycles able to reduce emissions of future aircraft. The design and evaluation processes are performed using the simplified analytical solution of the devices as well as 1D-CFD models. A code based on the finite volume method is built to predict the position and dimensions of the slots for the WR and ICWR. The mass and momentum equations are coupled through a modified SIMPLE algorithm to model compressible flow. The code includes a novel tracking technique to ensure the global mass balance. A code based on the method of characteristics is built to predict the profiles of temperature, pressure and velocity at the discharge of the PDE and the effect of the PDEs array when it operates as combustion chamber of gas turbines. The detonation is modelled by using the NASA-CEA code as a subroutine whilst the method of characteristics incorporates a model to capture the throttling and non-throttling conditions obtained at the PDE's open end during the transient process. A medium-sized engine for business jets is selected to perform the evaluation that includes parameters such as specific thrust, specific fuel consumption and efficiency of energy conversion. The ICWR offers the best performance followed by the PDE; both options operate with a low specific fuel consumption and higher specific thrust. The detonation in an ICWR does not require an external source of energy, but the PDE array designed is simple. The WR produced an increase in the turbine performance, but not as high as the other two devices. These results enable the statement that a pressure rise combustion process behaves better than pressure exchangers for this size of gas turbine. Further attention must be given to the NOx emission, since the detonation process is able to cause temperatures above 2000 K while dilution air could be an important source of oxygen.
8

Numerical modelling of pressure rise combustion for reducing emissions of future civil aircraft

Materano Blanco, Gilberto Ignacio 04 1900 (has links)
This work assesses the feasibility of designing and implementing the wave rotor (WR), the pulse detonation engine (PDE) and the internal combustion wave rotor (ICWR) as part of novel Brayton cycles able to reduce emissions of future aircraft. The design and evaluation processes are performed using the simplified analytical solution of the devices as well as 1D-CFD models. A code based on the finite volume method is built to predict the position and dimensions of the slots for the WR and ICWR. The mass and momentum equations are coupled through a modified SIMPLE algorithm to model compressible flow. The code includes a novel tracking technique to ensure the global mass balance. A code based on the method of characteristics is built to predict the profiles of temperature, pressure and velocity at the discharge of the PDE and the effect of the PDEs array when it operates as combustion chamber of gas turbines. The detonation is modelled by using the NASA-CEA code as a subroutine whilst the method of characteristics incorporates a model to capture the throttling and non-throttling conditions obtained at the PDE's open end during the transient process. A medium-sized engine for business jets is selected to perform the evaluation that includes parameters such as specific thrust, specific fuel consumption and efficiency of energy conversion. The ICWR offers the best performance followed by the PDE; both options operate with a low specific fuel consumption and higher specific thrust. The detonation in an ICWR does not require an external source of energy, but the PDE array designed is simple. The WR produced an increase in the turbine performance, but not as high as the other two devices. These results enable the statement that a pressure rise combustion process behaves better than pressure exchangers for this size of gas turbine. Further attention must be given to the NOx emission, since the detonation process is able to cause temperatures above 2000 K while dilution air could be an important source of oxygen.
9

Dynamic fluidic nozzles for pulse detonation engine applications

McClure, James R. III 03 1900 (has links)
Approved for public release; distribution is unlimited. / An efficient nozzle design is critical for enhancing the benefits of Pulse Detonation Engines (PDEs) and enabling their use as future propulsion or power generation systems. Due to the inherent variation in chamber pressure for Pulse Detonation Combustors, it has been difficult to design a nozzle, which has the capability to provide an appropriate exit-to-throat area ratio suited for both the detonation blow-down event and refresh pressures associated with the cyclic operation of a PDE. A two-dimensional PDE exit nozzle was designed, modeled, and constructed in an attempt to increase the overall efficiency of converting thermal energy to kinetic energy by providing a fluidic method to dynamically vary the effective nozzle area ratio. A fluidic nozzle configuration was evaluated, which had the ability to inject a small amount of air into the diverging section of the nozzle in order to dynamically create a more desirable exit-to-throat area ratio. Experimental testing was conducted on various injection flow rates, and a shadowgraph system was used to observe the fluid flow characteristics within the nozzle. Computer simulations were used to analyze the fluid flow properties within the nozzle. A comparison of the computer simulations and the experimental results was performed and demonstrated good agreement. / Lieutenant, United States Navy
10

Thrust Performance and Heat Load Modelling of Pulse Detonation Engines

Ragozin, Konstantin January 2020 (has links)
Pulse Detonation Engines (PDEs) are propulsion systems that use repeated detonations to generate thrust. Currently in early stages of development, PDEs have been theorised to have advantages over current deflagration based engines. Air-breathing PDEs could attain higher specific impulse values and operate at higher Mach numbers than today's air-breathing engines, while Pulse Detonation Rocket Engines (PDREs) could become a lighter, cheaper, and more reliable alternative to traditional rocket engines. There are still however, many technological hurdles to overcome before PDEs can be developed into practical propulsion systems, one major barrier being management of their immense heat loads. This thesis outlines the development of a numerical model for determining thrust performance and heat load characteristics of PDEs. The model is based on a set of analytical equations which characterise the gas dynamics inside the engine throughout it's cyclic process. Being numerically light -when compared to CFD analysis- the model allows for fast turnaround of results and the ability to sweep through parameters to determine optimum operating conditions to maximise engine performance and reduce heat load. In this study, the working principles of the model are described and it's outputs are validated against data from published experimental and numerical studies. The model is then used to conduct a comprehensive parametric study on the effects of various reactant combinations, operating conditions, and engine geometries on engine thrust, specific impulse and heat load. Lastly, a brief study is conducted on the feasibility of regenerative cooling for PDEs, using model outputs to determine if a heat balance can be achieved and the performance losses and complications that would result.

Page generated in 0.0737 seconds