Spelling suggestions: "subject:"pulse charging"" "subject:"hulse charging""
1 |
Investigation on Pulse Charging Characteristics of Lead-Acid BatteriesCheng, Jung-Chieh 16 June 2003 (has links)
This thesis investigates the performance of pulse charging, which is believed to be superior to constant current charging in some respects, such as charging efficiency and charging speed. The investigation is focused upon the extensively used secondary batteries, lead-acid batteries. The consecutive orthogonal arrays method is applied to search for the optimum operating variables of pulse charging, including pulse amplitude, duty ratio and frequency of the charging current.
Unfortunately, the experimental results of consecutive orthogonal arrays reveal that charging efficiency is not obviously affected by pulse amplitude, duty ratio or frequency. Instead, charging rate is dominantly influenced by average charging current. These results indicate that pulse charging scheme is not superior to constant current charging. To compare these two charging schemes further, a series of experiments are carried out to discuss the effects of each operating variables. Unfortunately, no evidence from the experimental results can prove the superiority of pulse charging to constant current charging as formerly documented.
|
2 |
Development of A Solar Energy Storage Charging System with Fuzzy Logic ControlHuang, Pin-Xun 07 July 2005 (has links)
With scarce the energy source and the worsened environment pollution, how to create and use a clean and never exhausted energy is becoming very important day by day. This thesis we proposed the research and development of a solar energy storage system with fuzzy logic control. This solar energy storage system is composed of the solar cell, charger, batteries, buck converter and digital a signal processor.
The solar energy storage charging system charger is based on buck circuit control with battery cycle pulse charging. with the fuzzy control theory combined in the tactics of charging , it¡¦s can improve the efficiency of charging, suppress the abnormally battery temperature rise, lengthen the battery¡¦s life, and reduce the waste used. In the experiment, four different charging methods, with the same starting voltage, are compared in terms of temperature control. Among the four methods, the fuzzy logic control proposed in this thesis is able to control the battery temperature at a good 30 Celsius Degree. Experimental and simulation results demonstrate the effectiveness and validity of the system.
|
3 |
Pulzní nabíjení olověného akumulátoru využívající záporných proudových pulzů / Pulse charging of lead-acid accumulator using negative current stepsKantor, Pavel January 2013 (has links)
The lead-acid batteries are the most commonly used electrochemical power sources and are the oldest type of secondary battery cells. This master thesis provides a short introduction to the lead-acid batteries. It shows possible ways of sorting from different points of view, describes construction of lead-acid batteries, parameters of lead-acid batteries and electrochemical and physical reactions inside the battery. Futher the thesis deals with pulse charging of lead-acid batteries. The thesis describes the production of a set of experimental electrodes for electrochemical workplace resources. The thesis introduces the develepment environment Agilent VEE PRO and demonstrates its capabilities. The final part of this thesis are experiments focusing on the pulse charging using negative current pulses and evaluate the effect of different pulse modes on cells.
|
4 |
Pulzní nabíjení olověného akumulátoru využívající záporných proudových pulzů / Pulse charging of lead-acid accumulator using negative current stepsKantor, Pavel January 2013 (has links)
The lead-acid batteries are the most commonly used electrochemical power sources and are the oldest type of secondary battery cells. This master thesis provides a short introduction to the lead-acid batteries and shows possible ways of sorting from different points of view. Thesis describes construction of lead-acid batteries, parameters of lead-acid batteries, electrochemical and physical reactions inside the battery. Futher the thesis deals with pulse charging of lead-acid batteries. In the next part of the thesis is described the production of a set of experimental electrodes for electrochemical workplace resources. The final part of this thesis are experiments focusing on the pulse charging using negative current pulses and evaluate the effect of different pulse modes on cells.
|
5 |
Optimalizace pulzního nabíjecího režimu olověného akumulátoru / Optimalization of pulse charging mode of lead-acid batterySygeryč, Daniel January 2014 (has links)
This thesis deals with pulse charging lead acid batteries. The theoretical part provides the basic electrochemical reactions that take place in the lead pack, then this section discusses important parameters of lead-acid battery, its structure and distribution of the various types depending on the application. The next section describes the theory of charging lead-acid battery. The practical part deals with constructing experimental cells, which are then tested. The subject of the experimental execution and optimization of pulse charging modes in order to find a suitable pulse mode, which reduces the duration of charging, while significantly shorten the life of lead-acid battery.
|
6 |
Kyslíkový cyklus při pulzním nabíjení olověného akumulátoru / Oxygen cycle during pulse charging of lead-acid accumulatorHavlíček, Jiří January 2015 (has links)
This master´s thesis applies to puls charging of lead-acid accumulator and arising oxygen cycle while charging. First part of the thesis is focused on potential dividing of lead-acid accumulators and their construction. I also focus on priciples of submerged electrodes accumulator, gel accumulator and AGM accumulator based on oxygen cycle. The next topic are thermal and degradation processes inside accumulators and their influence on capacity and lifespan. In theoretical part am I describing ways of charging and I also point out possitives and negatives. Practical part focuses on producing experimental cell and its form. Experimental cell is tested to different modes. I evaluate their influence on temperature inside the cell, intensity of oxygen cycle and capacity. I compare their influence on duration of charging cycle to another possible charging modes.
|
7 |
Teplotní změny při pulzním nabíjení olověného akumulátoru / Temperature changes during pulse charging of lead-acid accumulatorPřikryl, Kamil January 2014 (has links)
This master's thesis deals with the issue of lead-acid batteries, their charging methods and issue of thermal processes in lead-acid batteries. The thesis is divided into three main parts. The first section describes the theoretical knowledge of lead-acid batteries, such as history of lead-acid battery, structure, principle of operation, methods of charging and thermal processes taking place in the lead-acid battery. The second part describes in detail the production of experimental electrodes. The last section describes the automatic data logger for measuring and experiments, which were focused on pulse charging method with variable duty cycle pulses.
|
8 |
Pulse Charging of Li-ion Batteries for Enhanced Life Performance / Pulsladdning av Li-ion-batterier för förbättrad livslängdStrandberg, Josefin January 2023 (has links)
Det överhängande behovet av att minska utsläppen av växthusgaser för att uppfylla Parisavtalet har väckt ett ökat intresse för elektrifiering som en strategi för att mildra klimatförändringarna. Litiumjonbatterier spelar en central roll vid elektrifiering och har framträtt som det primära alternativet för batteridrivna elfordon. Batteriernas livstidsprestanda är dock en avgörande faktor för att bestämma deras kostnad och miljömässiga hållbarhet. Även om snabbladdning är ett gångbart alternativ för de kunder som vill maximera drifttiden så leder laddning vid höga strömmar till förhöjd åldring genom nedbrytning av elektrodmaterialet och elektrolyten. Nyligen genomförda studier har visat att pulsade laddningscykler kan förlänga livslängden för litiumjonbatterier. Mot bakgrund av detta har denna studie genomförts för att undersöka effekterna av pulsad laddning på bibehållande av kapacitet samt inre motstånd hos litiumjonbatterier. Cylindriska NMC-celler har cyklats med laddningsprofilen PPC-CV (Positive Pulsed Current-Constant Voltage) och deras prestanda har jämförts med motsvarande hos konventionell konstant ström-konstant spänning-laddning (CC-CV). En ny metod utvecklades och implementerades för att utföra en pulsad laddningsprofil inom ett definierat SoC-fönster (State-of-Charge). Testobjekten cyklades kontinuerligt under intervaller om 4 veckor med avbrott för standardiserade referensprestandatester (RPT) för att beräkna standardkapaciteten och det inre motståndet. Därutöver utfördes inkrementell kapacitetsanalys (ICA) och elektrokemisk impedansspektroskopi (EIS) för att utöka analysen. Enligt resultat visar de celler som cyklats med PPC-CV-profilen liknande eller något minskad kapacitetsminskning samt en lägre ökning av internt motstånd efter ungefär 700 ekvivalenta cykler. 0,01-Hz PPC-CV-profilen uppvisade en kapacitetsminskning på 3,65%, 1-Hz PPC-CV-profilen en på 3,75%, 100-Hz PPC-CV- profilen en på 4,06% och CC-CV-profilen en på 4,05%. De interna resistanserna förblev lägre än BOL-mätningarna i PPC-CV-testfallen, medan CC-CV-läget visar en snabbare ökning av internt motstånd. Batteriets hälsotillstånd (SoH) hade dock bara nått 95% under denna testfas, vilket innebär att ytterligare studier krävs för att dra definitiva slutsatser om pulsladdningens effekt på batteriets livslängd. För att ytterligare förstå effekten av pulsade laddningsprofiler på livslängden hos litiumjonbatterier kan textmatrisen utökas till ett bredare spektrum av testförhållanden, såsom temperatur, strömamplitud, arbetscykel och SoC-fönster. / The urgent need to reduce greenhouse gas emissions in order to comply with the Paris Agreement has sparked an increased interest in electrification as a strategy to mitigate climate change. Li-ion batteries play a crucial role in electrification, and have emerged as the primary option for battery electric vehicles. However, their lifetime performance is a critical factor in determining their cost and environmental sustainability. Although fast charging presents a viable option for customers wishing to maximize operational time, charging at high currents accelerate aging through degradation of the electrode material and the electrolyte. Recent studies have found that pulse charging protocols can extend the cycle life of Li-ion batteries. In light of this, this study has been conducted to investigate the effects of pulse charging on the capacity retention and internal resistance of Li-ion batteries. Prismatic NMC Li-ion battery cells were cycled using the Positive Pulsed Current-Constant Voltage (PPC-CV) charging mode, and their performance has been compared to that of conventional Constant Current-Constant Voltage (CC-CV) charging. A novel method was developed and implemented to execute a pulse charging profile within a defined State-of-Charge (SoC) window. The test objects were continuously cycled over intervals of 4 weeks with interruptions for standardized Reference Performance Tests (RPTs) to calculate the stan- dard capacity and internal resistance. In addition, Incremental Capacity Analysis (ICA) and Electrochemical Impedance Spectroscopy (EIS) were performed to ex- tend the analysis. According to results, cells cycled using the PPC-CV mode show similar or slightly reduced capacity fade and a lower increase in internal resistance after roughly 700 equivalent cycles. The 0.01-Hz PPC-CV mode exhibited a capacity fade of 3.65%, the 1-Hz PPC-CV mode 3.75%, the 100-Hz PPC-CV mode 4.06% and the CC-CV mode 4.05%. Internal resistances remained lower than the beginning of life measurements in the PPC-CV test cases, while the CC-CV mode shows a quicker increase in internal resistance. However, the battery State-of-Health (SoH) had only reached 95% during this testing phase, requiring further study to draw definitive conclusions regarding the impact of pulse charging on battery life performance. To further understand the impact of pulsed charging modes on Li-ion battery life performance, the text matrix may be extended to incorporate a broader range of test conditions, such as temperature, current amplitude, duty cycle and State-of-Charge (SoC) window.
|
9 |
Vliv pulzního nabíjení na vlastnosti olověných akumulátorů / Influence of the pulse charge on properties of the lead acid batteriesZbožínek, Štěpán January 2013 (has links)
The presented master´s thesis deals with lead-acid batteries and methods of their charging. First part shortly describes the problems of lead-acid batteries. There are introduced common principles, type of construction and requirements, that should be complied with lead-acid batteries. Following part discusses the basic characteristics of charging. There is given a detailed description of current pulse charging method, on which is also mainly focused this master´s thesis. For this charging method, several basic experiments were done in order to verify functionality of the measuring device, software, the tested cells and primarily to verify charging modes. The goal of this thesis is to find out suitable mode of pulse charging, which would be fast as well as tested cells-friendly. The conclusion of this master´s thesis contains a resume of acquired theoretical knowledge and an evaluation of measured results, on which was the appropriate charging mode proposed.
|
10 |
Lithium-ion Battery Modeling and Simulation for Aging Analysis using PyBaMM / Modellering och Simulering av Litiumjonbatterier för Åldringsanalys med hjälp av PyBaMMCoric, Amina January 2022 (has links)
The rate of degradation of a lithium-ion battery depends on its use i.e. how it is charged and discharged. Physics-based models are used to represent the processes inside a cell as well as the degradation mechanisms. This thesis aimed to compare how the battery lifetime is affected when charging with different charging protocols using different battery models and degradation mechanisms. The investigated models are the Single Particle Model (SPM), the Single Particle Model with electrolyte (SPMe), and the Doyle-Fuller Newman model (DFN). The degradation mechanisms are solid electrolyte interphase (SEI), and lithium plating (LP). The used charging protocols are constant-current constant voltage(CCCV), positive pulsed current (PPC), and constant current (CC). Pulsed charging was included to investigate if the battery lifetime can be improved as in an experiment by Huang where pulsed charging increased the battery lifetime by 60%. To perform the simulations using the physics-based models, PyBaMM (PythonBattery Mathematical Modeling) was used. The simulations were performed for a lithium cobalt oxide (LCO) cell. Two types of SEI were implemented, solvent-diffusion limited and reaction limited. For the LP only irreversible LP was used.1200 cycles were simulated. Comparing the PPC and CC protocols, there were no significant changes between the degradation mechanisms for the different protocols. The results were the same for all the models, except for the results of the internal resistance. The conclusion is that for the PPC and CC protocols, the cell degrades the same although the PPC protocol used twice the C-rate. The PPC charging did not increase the battery lifetime. For the CCCV and CC protocols, there were some bigger differences between the protocols, but between the different models, there weren’t any significant differences. The CCCV degrades the cell faster for all degradation mechanisms and all models. Simulating one degradation submodel at a time resulted in a very small capacity fade for some submodels. Therefore, for future work, it is suggested to use several degradation submodels at the same time but also to try other degradation mechanisms or try PPC protocols with different frequencies and duty cycles. / Hur snabbt litiumjonbatterier degraderas beror på hur de används, laddas och laddas ur. Fysikbaserde modeller används för att representera processerna inuti cellen och även degraderingsmekanismerna. Denna studie har genomförts för att undersöka hur batteriets livslängd påverkas av olika laddningsprotokoll genom att använda olika batterimodeller och degraderingsmekanismer. Modellerna som användes är Singel-partikelmodellen (SPM), Singel-partikelmodellen med elektrolyt (SPMe) och Doyle-Fuller Newman-modellen (DFN). Degraderingsmekanismerna är fast elektrolytinterfas (SEI) och litiumplätering (LP). Laddningsprotokollen som användes är konstant ström konstant spänning (CCCV), positiv pulserande ström (PPC) och konstant ström konstant (CC). Protokollet för pulsad laddning inkluderades för att undersöka om batteriets livslängd kan förbättras som i ett experiment av Huang, där pulsad laddning ökade batteriets livslängdmed 60%. För att utföra simuleringar med fysikbaserade modeller användes PyBaMM(Pyhton Battery Mathematical Modeling). Simuleringarna utfördes för en lithiumkobaltoxid-cell (LCO). Två typer av SEI implementerades, lösningsmedelsdiffusion-begränsad och reaktions-begränsad SEI. För LP användes endast irreversibel LP.1200 cykler simulerades. Jämförande PPC- och CC-protokollen fanns det inga signifikanta förändringar mellan degraderingsmekanismerna för de olika protokollen. Resultaten vardesamma för alla modellerna, förutom resultaten av den interna resistansen. Slutsatsen är att för både PPC- och CC-protokollen så degraderades cellen på samma sätt, trots att PPC-protokollet använde dubbelt så hög C-faktor. PPC-protokollet ökade inte batteriets livslängd. För CCCV- och CC-protokollen fanns det några större skillnader mellan protokollen, men mellan de olika modellerna fanns det inga signifikanta skillnader. CCCV-protokollet försämrade cellen snabbare för alla degraderingsmekanismer och alla modeller. Att simulera en degraderingsmodell i taget resulterade i mycket små kapacitetsförluster. Därmed föreslås det att i framtida arbete använda flera degraderingsmodeller samtidigt men även testa andra degraderingsmekanismer eller PPC-protokoll med olika frekvenser och arbetscykler
|
Page generated in 0.0708 seconds