• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rooting pattern and seed yield of selected pinto bean genotypes under different levels of soil moisture

Nleya, Thandiwe Mildred 01 January 1997 (has links)
Dry bean (<i>Phaseolus vulgaris</i>) is currently being introduced for rainfed production in the Dark Brown soil zone in Saskatchewan. Insufficient water is one of the major factors limiting crop production in this soil zone. Ten pinto bean genotypes (Othello, Agate, GH196-2, 6315, 5325, Earliray, Fiesta, ISB82-354, UI 111 and Nodak) were exposed to drought stress in the field to study their rooting pattern under drought stress. Three pinto bean genotypes (Othello, Agate and GH196-2) with an extensive root system in the deeper soil layers and three (Earliray, Fiesta and ISB82-354) with a less extensive root system were exposed to drought stress and nonstress conditions in the growth room and in the field to study the relationship between rooting pattern and seed yield. In addition, three indeterminate pinto bean genotypes (Othello, Nodak and Fiesta) and three determinate genotypes (Agate, Agassiz and Earliray) were exposed to a soil moisture gradient to study the effects of soil moisture level on seed yield and other agronomic traits. Othello, Agate and GH196-2 had an extensive root system in the deeper soil layers, whereas Earliray, Fiesta and ISB82-354 had a less extensive root system in the deeper soil layers. An extensive root system in the deeper soil layers was associated with increased soil moisture depletion at those depths. Shoot dry mass, total root dry mass, mean root length density and root:shoot ratio were the same for the ten pinto bean genotypes. Pinto bean genotypes with an extensive root system (Othello, Agate and GH196-2) in the deeper soil layers had higher seed yield compared to genotypes with a less extensive root system (Earliray, Fiesta and ISB82-354) in the deeper soil layers in the field and in the growth room. Due to insufficient drought stress in the field, the rooting pattern of the six pinto bean genotypes was the same under irrigation and rainfed conditions. In the growth room, pinto bean genotypes with an extensive root system showed a stronger recuperative ability after a severe drought stress compared to genotypes with a less extensive root system. Root traits were positively correlated with seed yield under adequate soil moisture or where drought stress was relieved before maturity. Soil moisture deficit reduced number of pods per plant, plant height, seed weight, seed yield and seed nitrogen concentration of both determinate and indeterminate pinto bean genotypes. Indeterminate pinto bean genotypes had, on average, higher mean seed yield and showed a greater seed yield response to increasing soil moisture availability compared to determinate genotypes. However, the difference in seed yield of the two groups was small under high drought stress, except in the case of one very early maturing determinate genotype.
2

Quantifying the nitrogen benefits of cool season pulse crops to an Alberta prairie cropping system

Williams, Christina Marie Unknown Date
No description available.
3

Effects of whole and fractionated yellow pea flours on indices of cardiovascular disease, diabetes and thermogenesis as well as the gastrointestinal microbiome

Marinangeli, Christopher 07 February 2011 (has links)
Whole yellow pea flour (WPF) and fractionated yellow pea flour (FPF) are novel functional food ingredients that vary in nutritional composition. Consequently, the health benefits of WPF and FPF remain undefined. The purpose of this research was to identify the effects of WPF and FPF on risk factors and morbidities associated with cardiovascular disease, diabetes and obesity as well as the gastrointestinal microbiome. Using USDA recommended dosages of WPF and FPF, clinical endpoints and the colonic microbiome were investigated using a human clinical trial engaging a cross-over design and a diet and energy controlled paradigm. Humans were also utilized to investigate post-prandial glycemic responses and sensory characteristics of novel functional foods formulated with WPF. Finally, Golden Syrian hamsters were used to assess the impact of high doses of WPF and FPF on clinical endpoints and caecal microbial abundance. Results reveal that USDA recommended dosages of WPF and FPF in humans decreased (p<0.05) fasting insulin and estimates of insulin resistance compared to white wheat flour (WF). Android-to-gynoid fat ratios in women were lower (p=0.027) in the WPF group compared to the WF group. FPF decreased (p<0.05) post-prandial energy expenditure alongside a tendency (p<0.075) to reduce carbohydrate oxidation. Novel biscotti and banana bread formulated with WPF induced low post-prandial glycemic responses which were similar to boiled whole yellow peas and significantly lower (p<0.05) than white bread. Sensory analysis of novel WPF biscotti and banana bread demonstrated that WPF-based food products are palatable and acceptable for human consumption. Hamsters consuming diets containing 10% WPF and FPF induced similar reductions (p<0.05) in fasting insulin levels compared to controls. However, animals consuming WPF increased (p<0.05) oxygen consumption while FPF decreased (p<0.05) fasting glucose levels. In addition, terminal restriction fragment length polymorphism analysis revealed that WPF and FPF induced distinct shifts in caecal microbial populations within the phyla Firmicutes. Finally, pyrosequencing analysis of human fecal microbiota demonstrated that FPF and WPF induced shifts in bacterial genera, primarily within Bacteroidetes and Firmicutes. In conclusion, whole and fractionated yellow pea flours are functional food ingredients and can be utilized to manage risk factors for lifestyle-related diseases in humans.
4

Effects of whole and fractionated yellow pea flours on indices of cardiovascular disease, diabetes and thermogenesis as well as the gastrointestinal microbiome

Marinangeli, Christopher 07 February 2011 (has links)
Whole yellow pea flour (WPF) and fractionated yellow pea flour (FPF) are novel functional food ingredients that vary in nutritional composition. Consequently, the health benefits of WPF and FPF remain undefined. The purpose of this research was to identify the effects of WPF and FPF on risk factors and morbidities associated with cardiovascular disease, diabetes and obesity as well as the gastrointestinal microbiome. Using USDA recommended dosages of WPF and FPF, clinical endpoints and the colonic microbiome were investigated using a human clinical trial engaging a cross-over design and a diet and energy controlled paradigm. Humans were also utilized to investigate post-prandial glycemic responses and sensory characteristics of novel functional foods formulated with WPF. Finally, Golden Syrian hamsters were used to assess the impact of high doses of WPF and FPF on clinical endpoints and caecal microbial abundance. Results reveal that USDA recommended dosages of WPF and FPF in humans decreased (p<0.05) fasting insulin and estimates of insulin resistance compared to white wheat flour (WF). Android-to-gynoid fat ratios in women were lower (p=0.027) in the WPF group compared to the WF group. FPF decreased (p<0.05) post-prandial energy expenditure alongside a tendency (p<0.075) to reduce carbohydrate oxidation. Novel biscotti and banana bread formulated with WPF induced low post-prandial glycemic responses which were similar to boiled whole yellow peas and significantly lower (p<0.05) than white bread. Sensory analysis of novel WPF biscotti and banana bread demonstrated that WPF-based food products are palatable and acceptable for human consumption. Hamsters consuming diets containing 10% WPF and FPF induced similar reductions (p<0.05) in fasting insulin levels compared to controls. However, animals consuming WPF increased (p<0.05) oxygen consumption while FPF decreased (p<0.05) fasting glucose levels. In addition, terminal restriction fragment length polymorphism analysis revealed that WPF and FPF induced distinct shifts in caecal microbial populations within the phyla Firmicutes. Finally, pyrosequencing analysis of human fecal microbiota demonstrated that FPF and WPF induced shifts in bacterial genera, primarily within Bacteroidetes and Firmicutes. In conclusion, whole and fractionated yellow pea flours are functional food ingredients and can be utilized to manage risk factors for lifestyle-related diseases in humans.
5

The effect of pulse crops on arbuscula mycorrhizal fungi in a durum-based cropping system

Fraser, Tandra 07 April 2008
Pulses are an important component in crop rotations in the semiarid Brown soil zone of southern Saskatchewan, Canada. Besides their capability to fix nitrogen, pulse crops establish a strong symbiotic relationship with arbuscular mycorrhizal fungi (AMF), which have been shown to increase nutrient and water uptake through hyphal extensions in the soil. Incorporating strongly mycorrhizal crops in a rotation may increase inoculum levels in the soil and benefit the growth of a subsequent crop. The objective of this study was to determine if AMF potential and colonization of a durum crop is significantly affected by cropping history and to assess the impact of pulses in crop rotations on the abundance and diversity of AMF communities in the soil. In 2004 and 2005, soil, plant, and root samples were taken on Triticum turgidum L. (durum) with preceding crops of Pisum sativum L. (pea), Lens culinaris Medik (lentil), Cicer arietinum L. (chickpea), Brassica napus L. (canola) or Triticum turgidum L. (durum). Although there were few differences in soil N and P levels, previous crop had a significant effect (p<0.05) on durum yields in both years. A previous crop of pea was associated with the highest yields, while the durum monocultures were lowest. Arbuscular mycorrhizal potential and colonization were significantly affected (p<0.05) by cropping history, but not consistently as a result of inclusion of a pulse crop. Phospholipid and neutralipid fatty acids (PLFA/NLFA) were completed to analyse the relative abundance of AMF (C16:1ù5), saprophytic fungi (C18:2ù6), and bacteria in the soil. The effect of treatment on the abundance of AMF, saprotrophic fungi and bacteria were not significant (p<0.05), but the changes over time were. These results demonstrate that although previous crop may play a role in microbial community structure, it is not the only influencing factor.
6

The effect of pulse crops on arbuscula mycorrhizal fungi in a durum-based cropping system

Fraser, Tandra 07 April 2008 (has links)
Pulses are an important component in crop rotations in the semiarid Brown soil zone of southern Saskatchewan, Canada. Besides their capability to fix nitrogen, pulse crops establish a strong symbiotic relationship with arbuscular mycorrhizal fungi (AMF), which have been shown to increase nutrient and water uptake through hyphal extensions in the soil. Incorporating strongly mycorrhizal crops in a rotation may increase inoculum levels in the soil and benefit the growth of a subsequent crop. The objective of this study was to determine if AMF potential and colonization of a durum crop is significantly affected by cropping history and to assess the impact of pulses in crop rotations on the abundance and diversity of AMF communities in the soil. In 2004 and 2005, soil, plant, and root samples were taken on Triticum turgidum L. (durum) with preceding crops of Pisum sativum L. (pea), Lens culinaris Medik (lentil), Cicer arietinum L. (chickpea), Brassica napus L. (canola) or Triticum turgidum L. (durum). Although there were few differences in soil N and P levels, previous crop had a significant effect (p<0.05) on durum yields in both years. A previous crop of pea was associated with the highest yields, while the durum monocultures were lowest. Arbuscular mycorrhizal potential and colonization were significantly affected (p<0.05) by cropping history, but not consistently as a result of inclusion of a pulse crop. Phospholipid and neutralipid fatty acids (PLFA/NLFA) were completed to analyse the relative abundance of AMF (C16:1ù5), saprophytic fungi (C18:2ù6), and bacteria in the soil. The effect of treatment on the abundance of AMF, saprotrophic fungi and bacteria were not significant (p<0.05), but the changes over time were. These results demonstrate that although previous crop may play a role in microbial community structure, it is not the only influencing factor.

Page generated in 0.0563 seconds