• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 85
  • 39
  • 36
  • 16
  • 13
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 661
  • 200
  • 117
  • 116
  • 115
  • 112
  • 111
  • 111
  • 99
  • 80
  • 79
  • 76
  • 53
  • 52
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

A study of cyclic and continuous heat pump operation as it affects heat transfer rates for two soil types

Lyman, Paul Lawrence. January 1952 (has links)
Call number: LD2668 .T4 1952 L9 / Master of Science
92

Performance prediction model for a rotary multi-bed adsorption coolingsystem

Li, Yong, 李勇 January 2004 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
93

Timely Hints for Farmers

University of Arizona. Agricultural Experiment Station., Smith, G. E. P. 12 June 1912 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
94

An investigation of the integration and optimisation of a heat pump with a thermal store

Votsis, P. P. January 1989 (has links)
No description available.
95

Inaccessible equipment monitoring via vibratory signature analysis utilising data collected by remote accelerometers

Ribeiro, Marcos Pellegrini January 1999 (has links)
No description available.
96

An absorption recompression system

Wong, Choong Wah January 1996 (has links)
No description available.
97

Investigating plant calcium pumps : an antipeptide antibody approach

Williamson, Ian M. January 1996 (has links)
No description available.
98

Understanding and improving microbial biofuel tolerance as a result of efflux pump expression through genetic engineering and mathematical modeling

Turner, William James 01 January 2014 (has links)
Recent advances in synthetic biology have enabled the construction of non-native metabolic pathways for production of next-generation biofuels in microbes. One such biofuel is the jet-fuel precursor α-pinene, which can be processed into high-energy pinene dimers. However, accumulation of toxic biofuels in the growth medium limits the possible fuel yield. Overexpression of transporter proteins such as efflux pumps can increase tolerance to biofuels by pumping them out of the cell, thus improving fuel yields. However, too many efflux pumps can compromise the cell as well, creating a trade-off between biofuel toxicity and pump toxicity. In this work we improve the conditions of this trade-off in order to increase pinene tolerance in E. coli. We do so by constructing strains incorporating multiple efflux pumps from a variety of organisms and then testing them for tolerance in growth assay experiments. Previous research has suggested that certain combinations of efflux pumps can confer additional tolerance compared to the individual pumps themselves. However, the functional form of the combination of the tolerance provided by each pump and the toxicity due to their simultaneous activity is unknown. Using differential equations, we developed a growth model incorporating the trade-offs between toxicity of α-pinene and efflux pump activity to describe the dynamics of bacterial growth under these conditions. By analyzing biofuel toxicity and the effects of each efflux pump independently through a series of experiments and mathematical models, we propose a functional form for their combined effect on growth rate. We model the mean exponential growth rate as a function of pump induction and biofuel concentration and compare these results to experimental data. We also apply this technique to modeling toxicity of ionic liquids, a class of corrosive salts that has emerged as and effective chemical for pretreatment of biofuel production feedstock. We compare a model for a variety of ionic liquid responsive efflux pump controllers to that of an IPTG inducible controller and show agreement with experimental data, supporting the model's utility to test control schemes before conducting experiments. The overall goal of this project is to use modeling to guide design of tolerance mechanisms to improve overall biofuel yield.
99

Pressure drop during condensation inside smooth, helical micro-fin, and herringbone micro-fin tubest

08 August 2012 (has links)
M.Ing. / Since the promulgation of the Montreal Protocol many refrigerants needed to be phased out. R-22, which is a widely used refrigerant in refrigeration systems, was one of these. Many replacements have been found throughout the years but very few have the same refrigeration capacity without being penalised by an increase in pressure drop. R-407C is one of the refrigerants having the potential to replace R-22 as it has the same theoretical coefficient of performance and has a lower global warming potential. However, due to its zeotropic characteristics there is a degradation in heat transfer during evaporation and condensation attributed to mass transfer resistance. Thus, augmentation techniques are needed not only to increase the heat capacity, but also to achieve an increase without incurring an excessive pressure drop. One approach to cope with this problem is to make use of the recently developed herringbone micro-fin tubes. Unfortunately very little data exists for refrigerants undergoing condensation inside herringbone micro-fin tubes. There is also little pressure drop information available for this type of tube. An experimental set-up was designed to determine the characteristics of this type of tube due to the scarcity of information. With the aid of current literature, various techniques were used to determine the pressure drops inside the herringbone micro-fin tube. One of these techniques was the use of the Kattan-Thome-Favrat flow regime map which helped to identify the flow patterns inside the tube. Knowledge of the type of flow occurring inside the tube helped to clarify the behaviour of the pressure drop relationships. The type of refrigerant being used also affected the behaviour of the pressure drop curves. A low-pressure refrigerant had a higher pressure drop due to the high vapour velocities achieved. Another cause for excessive pressure drop is the friction created by the high velocity vapour and condensate inside the tube. Many relationships for the friction factor exist and these are used to analyse the experimental data.The experimental facility comprised of a vapour compression loop and a water loop. The vapour compression loop consisted of a hermetically sealed compressor with a cooling capacity of 9.6 kW, a manually operated expansion valve and an evaporator. Three condensers were tested, namely a smooth tube, a helical micro-fin tube, and a herringbone micro-fin tube. The condensers were of the tube-in-tube type with the refrigerant flowing in the inner tube and the water in counter flow in the annulus. The hot water loop was used as a source for the evaporator and a cold loop as a heat sink for the condenser. Three refrigerants were tested, namely R-22, R-134a, and R-407C, all operating at a nominal saturation temperature of 40°C and at mass fluxes between 300 and 800 kg/m 2s. Accurate sensors and transducers were used to measure the temperatures, pressures, and mass flows at predefined points. Video cameras were attached to sight glasses to aid in the identification of the type of flow regime. Data were captured using a computerised data acquisition programme designed specifically for use with the experimental study. The experimental results showed that transition between the annular and intermittent flow regimes occurred at around 25% vapour quality for the herringbone micro-fin tube, as opposed to 30% for the helical micro-fin tube and 50% for the smooth tube. Pressure drops for the herringbone micro-fin tube were higher than those for the smooth tube but slightly lower than those for the helical micro-fin tube when using refrigerants R-22 and R-134a. The correlation of Liebenberg was modified for the pressure drops inside the herringbone micro-fin tube and gave a mean deviation of 12%. The efficiency ratio for the herringbone tube using R-22 was 1.85 and 1.69 when compared with the helical micro-fin and smooth tube respectively. For R-134 the efficiency ratio was 2.02 and 2.13 when compared with the helical micro-fin and smooth tube respectively, while for R-407C it was 1.58 and 1.26 for the two respectively. It was also concluded that R-407C could be used as a replacement refrigerant for R-22when used with a herringbone micro-fin tube.
100

Investigation of Chemical Looping for High Efficiency Heat Pumping

Nelson A. James (5929826) 10 May 2019 (has links)
<p>The demand for heat pumping technologies is expected to see tremendous growth over the next century. Traditional vapor compression cycles are approaching practical limits of efficiency and running out of possibilities for environmentally friendly and safe refrigerants. As a result, there is an increasing interest in pursuing non-vapor compression technologies that can achieve higher efficiencies with alternative working fluids. The chemical looping heat pump (CLHP) investigated here utilizes a chemical reaction to alternate a working fluid between more and less volatiles states. This allows the main compression to take place in the liquid phase and enables the utilization of a range of different working fluids that would not be appropriate for vapor compression technology. </p> <p> </p> <p>Thermodynamic models were developed to assess the potential performance of a chemical looping heat pump driven by electrochemical cells. A number of potential working fluids were identified and used to model the system. The thermodynamic models indicated that the chemical looping heat pump has the potential to provide 20% higher COPs than conventional vapor compression systems. </p> <p> </p> <p>An experimental test stand was developed to investigate the efficiency with which the electrochemical reactions could be performed. The working fluids selected were isopropanol and acetone for reasons of performance and availability. The test stand was designed to measure not only the power consumed to perform the conversion reaction but also the concentration of products formed after the reaction. The experimental tests showed that it was possible to perform the reactions at the voltages required for an efficient chemical looping heat pump. However, the tests also showed that the reactions proceed much slower than expected. To increase the rates of the reactions, an optimization effort on the membrane and catalyst selections was performed. </p> <p> </p> <p>Traditional catalyst materials used by solid polymer electrochemical cells, like those used in the testing, perform best in hydrated environments. The fluids isopropanol and acetone tend to displace water in the membranes, reducing the system conductivity. Multiple membrane types were explored for anhydrous operation. Reinforced sPEEK membranes were found to be the most suitable choice for compatibility with the CLHP working fluids. Multiple catalyst mixtures were also tested in the experimental setup. Density functional theory was used to develop a computational framework to develop activity maps which could predict the performance of catalyst materials based on calculated parameters. </p> <p> </p> <p>A detailed model of the CLHP electrochemical cell was developed. Built on open-source tools, the model was designed to determine the charge, mass, and heat transfers within the cell. The conversion of reactants along the channel of the cell as well as overall power consumption are predicted by the model. The model was validated against measurements and used to determine parameters for a CLHP cell that would have improved conversion performance and energy efficiency compared with the tested cell. </p> <p> </p> <p>The cell model was integrated into an overall system model which incorporates the effect of concentration changes throughout the entire cycle. Compared to the early-stage thermodynamic modeling, consideration of incomplete reactions provided more accurate predictions of the potential performance of CLHP systems. Different cell and system architectures were investigated to boost system performance. The model predictions demonstrated that the CLHP has the potential to provide high heat pumping efficiencies, but more work is still needed to improve the energy density of the system. </p>

Page generated in 0.0731 seconds