• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation compacte et conception de circuit à base d'injection de spin / Compact modeling and circuit design based on spin injection

An, Qi 05 October 2017 (has links)
La technologie CMOS a contribué au développement de l'industrie des semi-conducteurs. Cependant, au fur et à mesure que le noeud technologique est réduit, la technologie CMOS fait face à des défis importants liés à la dissipation dûe aux courants de fuite et aux effets du canal court. Pour résoudre ce problème, les chercheurs se sont intéressés à la spintronique ces dernières années, compte tenu de la possibilité de fabriquer des dispositifs de taille réduite et d'opérations de faible puissance. La jonction tunnel magnétique (MTJ) est l'un des dispositifs spintroniques les plus importants qui peut stocker des données binaires grâce à la Magnétorésistance à effet tunnel (TMR). En dehors des applications de mémoire non volatile, la MTJ peut également être utilisée pour combiner ou remplacer les circuits CMOS pour implémenter un circuit hybride, de façon à combiner une faible consommation d'énergie et des performances à grande vitesse. Cependant, le problème de la conversion fréquente de charge en spin dans un circuit hybride peut entraîner une importante consommation d'énergie, ce qui obère l'intérêt pour des circuits hybrides. Par conséquent, le concept ASL qui repose sur un pur courant de spin comme support de l'information est proposé pour limiter les conversions entre charge et spin, donc pour réduire la consommation d'énergie. La conception de circuits à base de dispositif ASL entraîne de nombreux défis liés à l'hétérogénéité qu'ils introduisent et à l'espace de conception étendu à explorer. Par conséquent, cette thèse se concentre sur l'écart entre les exigences d'application au niveau du système et la fabrication des nanodispositifs. Au niveau du dispositif, nous avons développé un modèle compact intégrant le STT, la TMR, les effets d'injection/accumulation de spin, le courant de breakdown des canaux et le délai de diffusion de spin. Validé par comparaison avec les résultats expérimentaux, ce modèle permet d'explorer les paramètres du dispositif liés à la fabrication, tels que les longueurs de canaux et les tailles de MTJ, et aide les concepteurs à éviter leur destruction. De plus, ce modèle, décrit avec Verilog-A sur Cadence et divisé en plusieurs blocs : injecteur, détecteur, canal et contact, permet une conception indépendante et une optimisation des circuits ASL qui facilitent la conception de circuits hiérarchiques et complexes. En outre, les expressions permettant le calcul de l'injection/accumulation de spin pour le dispositif ASL utilisé sont dérivées. Elles permettent de discuter des phénomènes expérimentaux observés sur les dispositifs ASL. Au niveau circuit, nous avons développé une méthodologie de conception de circuit/système, en tenant compte de la distribution des canaux, de l'interconnexion des portes et des différents rapports de courant d'injection provoqués par la diffusion de spin. Avec les spécifications et les contraintes du circuit/système, les fonctions booléennes du circuit sont synthétisées en fonction de la méthode de synthèse développée et des paramètres de niveau de fabrication : longueur des canaux, et tailles MTJ sont spécifiées. Basé sur cette méthodologie développée, les circuits combinatoires de base qui forment une bibliothèque de circuits sont conçus et évalués en utilisant le modèle compact développé. Au niveau du système, un circuit DCT, un circuit de convolution et un système Intel i7 sont évalués en explorant les problèmes d'interconnexion : la répartition de l'interconnexion entre les portes et le nombre de tampons inséré. Avec des paramètres théoriques, les résultats montrent que le circuit/système ASL peut surpasser le circuit/système basé sur CMOS. De plus, le pipeline du circuit basé sur ASL est discuté avec MTJ comme tampons insérés entre les étapes. La reconfigurabilité provoquée par les polarités/valeurs du courant d'injection et les états des terminaux de control des circuits ASL sont également discutés avec l'exploration reconfigurable des circuits logiques de base. / The CMOS technology has tremendously affected the development of the semi-conductor industry. However, as the technology node is scaled down, the CMOS technology faces significant challenges set by the leakage power and the short channel effects. To cope with this problem, researchers pay their attention to the spintronics in recent years, considering its possibilities to allow smaller size fabrication and lower power operations. The magnetic tunnel junction (MTJ) is one of the most important spintronic devices which can store binary data based on Tunnel MagnetoResistance (TMR) effect. Except for the non-volatile memory, MTJ can be also used to combine with or replace the CMOS circuits to implement a hybrid circuit, for the potential to achieve low power consumption and high speed performance. However, the problem of frequent spin-charge conversion in a hybrid circuit may cause large power consumption, which diminishes the advantage of the hybrid circuits. Therefore, the ASL concept which uses a pure spin current to transport the information is proposed for fewer charge-spin conversions, thus for less power consumption. The design of ASL device-based circuits leads to numerous challenges related to the heterogeneity they introduce and the large design space to explore. Hence, this thesis focus on filling the gap between application requirements at the system level and the device fabrication at the device level. In device level, we developed a compact model integrating the STT, the TMR, the spin injection/accumulation effects, the channel breakdown current and the spin diffusion delay. Validated by comparing with experimental results, this model allows exploring fabrication-related device parameters such as channel lengths and MTJ sizes and help designers to prevent from device damages. Moreover, programmed with Verilog-A on Cadence and divided into several blocks: injector, detector, channel and contact devices, this model allows the independent design and cross-layer optimization of ASL-based circuits, that eases the design of hierarchical, complex circuits. Furthermore, the spin injection/accumulation expressions for the used ASL device are derived, enabling to discuss the experimental phenomena of the ASL device. In circuit level, we developed a circuit/system design methodology, taking into account the channel distribution, the gate interconnection and the different injection current ratios caused by the spin diffusion. With circuit/system specifications and constraints, the boolean functions of a circuit are synthesized based on the developed synthesis method and fabrication-level parameters: channel lengths, MTJ sizes are specified. Based on this developed methodology, basic combinational circuits that form a circuit library are designed and evaluated by using the developed compact model. In system level, a DCT circuit, a convolution circuit and an Intel i7 system are evaluated exploring the interconnection issues: interconnection distribution between gates and inserted buffer count. With theoretical parameters, results show that ASL-based circuit/system can outperform CMOS-based circuit/system. Moreover, the pipelining schema of the ASL-based circuit is discussed with MTJ as latches inserted between stages. The reconfigurability caused by the injection current polarities/values and the control terminal states of ASL-based circuits are also discussed with the reconfigurable exploration of basic logic circuits.
2

Etude de l'injection et détection de spin dans le silicium et germanium : d'une mesure locale de l'accumulation à la détection non locale du courant de spin / A Study of spin injection and detection in silicon and germanium : from the local measurement of spin accumulation to the non-local detection of spin currents

Rortais, Fabien 18 October 2016 (has links)
Depuis la découverte de la magnétorésistance (MR) géante en 1988 par le groupe d'Albert Fert (prix Nobel de physique en 2007), le domaine de l'électronique de spin a connu un essor sans précédent, justifié par toutes les applications qu'elle permet d'envisager en électronique.Depuis une vingtaine d'années, il est question d'utiliser le degré de liberté de spin directement dans les matériaux semi-conducteurs avec le gros avantage par rapport aux métaux de pouvoir manipuler électriquement le spin des porteurs. L'électronique de spin dans les matériaux semi-conducteurs utilise pour coder l'information non seulement la charge des porteurs (électrons et trous), mais aussi leur spin. En associant charge et spin, on ajoute de nouvelles fonctionnalités aux dispositifs de micro-électronique traditionnels.Le premier challenge consiste à contrôler l’injection et la détection d’une population de porteurs polarisés en spin dans les semi-conducteurs traditionnels (Si, Ge).Pour cela, nous avons étudié des dispositifs hybrides de type MIS: Métal ferromagnétique/Isolant/Semi-conducteur qui nous permettent d'injecter et de détecter électriquement un courant de spin. La première partie de cette thèse concerne les dispositifs à 3 terminaux sur différents substrats qui utilisent une unique électrode ferromagnétique pour injecter et détecter par effet Hanle l’accumulation de spin dans les semi-conducteurs. Une amplification des signaux de spin extraits expérimentalement par rapport aux valeurs théoriques du modèle diffusif est à l’origine d’une controverse importante. Nous avons alors démontré que l’origine du signal de MR ou de l’amplification ne peut être expliquée par la présence de défauts dans la barrière tunnel. A l’inverse, nous prouvons la présence d’états d’interface qui peuvent expliquer l’amplification du signal de spin. De plus, la réduction de la densité d’états d’interface par une préparation de surface montre des changements significatifs comme la diminution du signal de spin.La deuxième partie de ces travaux concerne la transition vers les vannes de spin latérales sur semi-conducteurs. Dans ces dispositifs utilisant deux électrodes FM, le découplage entre l’injection et la détection de spin permet de s’affranchir des effets de magnétorésistance parasites car seul un pur courant de spin est détecté dans le semi-conducteur. Par une croissance d’une jonction tunnel ferromagnétique épitaxiée, nous avons démontré l’injection de spin dans des substrats de silicium et germanium sur isolant. En particulier nous observons un fort signal de spin jusqu’à température ambiante dans le germanium.Finalement, les prémices de la manipulation de spin par l’étude du couplage spin-orbite ont été étudiées dans les substrats d’arséniure de gallium et de germanium. En effet, nous avons induit par effet Hall de spin (une conséquence du couplage spin-orbite) une accumulation de spin qui a été sondée en utilisant la spectroscopie de muon. On démontre alors, à basse température, la présence de l’accumulation grâce au couplage entre les spins électroniques accumulés et les noyaux de l’arséniure de gallium. / Since the discovery of the giant magnetoresistance in 1988 by the group of Albert Fert (Nobel Prize in 2007), the field of spintronics has been growing very fast due to its potential applications in micro-electronics.For almost 20 years, it has been proposed to introduce the spin degree of freedom directly in the semiconducting materials. Spintronics aims at using not only the charge of carriers (electrons and holes) but also their intrinsic spin degree of freedom. In that case, spins might be manipulated with electric fields. By using both charge and spin, one might add new functionalities to traditional micro-electronic devices.Indeed, the first challenge of semiconductor spintronics is to create and detect a spin polarized carrier population in traditional semiconductors like Si and Ge to further manipulate them.For this purpose, we have used hybrid ferromagnetic metal/insulator/semiconductor devices which allow us to perform electrical spin injection and detection. The first part of this thesis deals with 3 terminal devices grown on different substrates and in which a single ferromagnetic electrode is used to inject and detect spin polarized electrons using the Hanle effect. A spin signal amplification is measured experimentally as compared to the value from the theoretical diffusive model, this raised a controversy concerning 3 terminal measurements. We demonstrate that localized defects in the tunnel barrier cannot be at the origin of the measured MR signal and spin signal amplification. Instead, we show that the presence of interface states is the origin of the spin signal amplification in all the substrates. By using a proper surface preparation and the MBE growth of the magnetic tunnel junctions, we reduce the density of interface states and show a significant modification of the spin signals.In a second part, we present the transition from 3 terminal measurements to lateral spin valves on semiconductors. In the last configuration by using two ferromagnetic electrodes, charge and spin currents are decoupled in order to avoid any spurious magnetoresistance artefacts. Using epitaxially grown magnetic tunnel junctions we can prove the spin injection in silicon and germanium. Especially, we are able to measure non local spin signals in germanium up to room temperature.Finally, we study the spin Hall effect in gallium arsenide and germanium substrates. For this propose we induce spin accumulation using the spin Hall effect (i.e spin-orbit coupling) and probe it using muon spectroscopy. We demonstrate, at low temperature the presence of spin accumulation by the coupling between nuclear spins and the electron spin accumulation.

Page generated in 0.1032 seconds