Spelling suggestions: "subject:"pure sciences"" "subject:"cure sciences""
521 |
Sublingual drug delivery: In vitro characterization of barrier properties and prediction of permeabilityGoswami, Tarun 01 January 2008 (has links) (PDF)
Sublingual administration of drugs offers advantages including avoidance of first pass metabolism and quick absorption into the systemic circulation. In spite of being one of the oldest routes of drug delivery, there is dearth of literature on characterization of the barrier properties of the sublingual mucosa. Therefore, the aim of this research was to gain an insight into the barrier properties of the porcine sublingual mucosa. The studies conducted in this dissertation research focused on an important aspect of sublingual permeation, the dependence of permeability on different physicochemical properties of the permeant such as the degree of ionization, distribution coefficient and molecular weight/size on drug transport across sublingual mucosa. Further the data from the sublingual permeation of model compounds was used in development of a predictive model which provided us with some understanding regarding the important descriptors required for sublingual drug delivery. A series of β-blockers were employed as the model drugs to study the dependence of permeability on lipophilicity across the sublingual mucosa. Eighth different β-blockers with log D (distribution coefficient) values ranging from -1.30 to 1.37 were used in this study. The most hydrophilic drug atenolol showed the lowest permeability (0.19 ± 0.04 x 10 -6 ) cm/sec and the most lipophilic drug propranolol showed the highest permeability (38.25 ± 4.30 x 10 -6 ) cm/sec. The log-log plot of permeability coefficient and the distribution coefficient showed a linear relationship. It was concluded that the increase in lipophilicity results in improved partitioning across the lipid bilayers of sublingual mucosa which results in increased permeation for the drugs. As the sublingual mucosa contains a significant amount of the polar lipids bonded with water molecules, therefore, it was hypothesized that the hydrophilic or ionized permeants will have significant permeation across the sublingual mucosa. The objective of this research was to study the effect of ionization on permeation across sublingual mucosa using a model drug nimesulide. Based on the relationship between the permeability coefficient and distribution coefficient of nimesulide at different pH, the lipoidal route was suggested as the dominant transport route for nimesulide across the sublingual mucosa. The contribution of individual ionic species of nimesulide to the total drug flux was quantitatively delineated. It was observed that the ionized species of nimesulide contributes significantly to the total flux across the sublingual mucosa. The contribution of the ionized species to total flux was almost (90%) at a pH where the drug was almost completely ionized. Polyethylene glycols (PEGs) were used as the model permeants to study the dependence of permeability on molecular weight. An inverse relationship between molecular weight and permeability coefficients was observed. This relationship was used to estimate the molecular weight cut off for the sublingual mucosa. The molecular weight cut off was estimated to be around 1675 daltons. Further, the Renkin function was used to estimate the theoretical pore size of the sublingual mucosa and the pore size of the sublingual mucosa was estimated to be around 30–53 Å based on two separate calculations using the radius of gyration and Stokes-Einstein radius for PEG molecules, respectively. No specific model is present in literature to predict the in vitro sublingual drug permeability. In this dissertation a specific model was developed and validated by performing permeation studies of 14 small molecules across the porcine sublingual mucosa. It was shown that the lipophilicity (logD 6.8 ) and the number of hydrogen bond donors (HBD) were the most significant descriptors affecting sublingual permeability. Research conducted in this dissertation provided an in-depth understanding about the barrier properties of the porcine sublingual mucosa and role of different physicochemical properties on sublingual transport. Such an understanding will hopefully expand the suitable lead candidates for sublingual delivery.
|
522 |
Effects of acetylated polyamines on differentiation of Cloudman S91 melanoma cellsMalladi, Ramana Rao 01 January 1999 (has links) (PDF)
Acetylated polyamines, N 1 - and N 8 -acetylspermidine, are key intermediates in polyamine metabolism. Hexamethylenebisacetamide (HMBA) is a synthetic polyamine derivative known to induce in vitro biochemical and morphological differentiation of murine and human tumor cell lines. Deacetylation of HMBA and/or its metabolite N-acetyl-1,6-diaminohexane (NADAH) has been suggested to be catalyzed by N 8 -acetylspermidine deacetylase, a cytoplasmic enzyme involved in polyamine metabolism. The present investigation is focused on (1) the effect of N 1 - and N 8 -acetylspermidines, HMBA and NADAH on differentiation in Cloudman S91 melanoma cells, and (2) the effect of 7-[N-(3-aminopropyl)amino]heptan-2-one (APAH), a N 8 -acetylspermidine deacetylase inhibitor, on the effects of N 8 -acetylspermidine, HMBA, and NADAH on differentiation in Cloudman S91 melanoma cells. The biochemical signs of differentiation were measured as melanin content (absorbance at 475 nm) and tyrosinase activity (release of 3 H 2 O from 3 H-tyrosine) per μg protein. α-Melanocyte stimulating hormone (α-MSH) was used as a positive control. After 4 days of treatment, MSH at 100 nM raised the melanin to 293% of control (p < 0.05) and tyrosinase activity to 550% of control (p < 0.05). Spermidine did not produce any significant effect on these parameters in S91 cells. N 1 -acetylspermidine increased tyrosinase activity only at higher concentrations (100 and 1000 μM). However, 24-hour treatment of N 8 -acetylspermidine produced a dose dependent differentiation of S91 cells. At 10 −4 M, N 8 -acetylspermidine increased melanin by 85% and tyrosinase activity by more than 150% of control (p < 0.05). APAH alone had moderate effect on differentiation but potentiated and prolonged the effects produced by N 8 -acetylspermidine. HMBA decreased both melanin and tyrosinase activity in a dose dependent manner. After 4 days of treatment, 3 mM HMBA reduced melanin to 60% of control (p < 0.05) and tyrosinase activity to 4% of control (p < 0.05). NADAH is more active than HMBA. APAH was able to reduce the effects of HMBA (but not those of NADAH) on the parameters of differentiation. The results from the present study suggest that N 8 -acetylspermidine and HMBA have opposite effects on differentiation of S91 cells. The inability of APAH to counter NADAH-mediated decrease in tyrosinase activity suggests that APAH may be blocking the deacetylation of NADAH to an inactive metabolite.
|
523 |
Development of an in vitro dissolution model to predict the in vivo behavior of poorly soluble compoundsVangani, Saroj 01 January 2010 (has links) (PDF)
One of the challenges of biopharmaceutics research is correlating in vitro drug release information with the in vivo drug profiles often known as in vitro-in vivo correlations (IVIVC). These have huge cost savings in pharmaceutical industry. This dissertation describes the development of a novel in vitro dissolution model that has been designed to evaluate the in vitro release of poorly water-soluble model compounds so as to predict their in vivo behavior. The flow through apparatus (USP 4) has been coupled with the compendial dissolution apparatus (USP 2). A bi-phasic dissolution medium has been used to achieve sink conditions. The dissolved drug from the aqueous phase is continuously extracted into the organic phase of the biphasic dissolution medium, mimicking the dynamic process of in vivo absorption. The model can successfully discriminate between the bioequivalent and non-bioequivalent formulations and can be used to establish IVIVC. It was concluded that the model will serve as a surrogate for bioequivalence studies and to support biowaivers.
|
524 |
Thermochemical differences in lysine and lysine-homolog containing oligopeptides: Determination of basicity and gas-phase structure through mass spectrometry, infrared spectroscopy, and computational chemistryBatoon, Patrick Henry M. 01 January 2016 (has links)
The data presented in this thesis is a comprehensive study on the nature of peptide structure and how subtle and systematic changes in sequence and sidechain affect the basicity, ion stability, and conformation of a peptide. The peptides characterized were acetylated polyalanine di-, tri-, and tetra- peptides containing a proton-accepting probe: lysine and or the non-proteinogenic lysine-homologs: ornithine, 2,4-diaminobutyric acid, and 2,3-diaminopropionic acid. Peptides were studied in isomeric pairs for which the basic amino acid was placed closest to the N-terminus or the C-terminus of each peptide family (A n Probe vs. ProbeA n ). Using a variety of mass spectrometry based techniques and infrared multiphoton dissociation ion spectroscopy, the isomeric families of polyalanine peptides were characterized. Quantum chemical techniques were employed in parallel to provide theoretical predictions of three-dimensional structure, physical properties (dipole moment, polarizability, and accessible surface area), thermochemical values, and vibrational IR spectra, to gain further understanding of the peptides studied and to push the limits of current theoretical models. Overall it was found that the AnProbe peptide was more basic than their ProbeAn isomer. For the dipeptide systems, the greater basicity of AProbe peptides was due to efficiently charge-solvated ions which formed more compact structures compared to their ProbeA counterpart. For the tri- and tetra- peptide systems, greater basicity of the A 2,3 Probe peptides was likely due to formation of α or 3 10 helix-like structures in the protonated forms., introducing the macrodipolar effect, which cooperatively encouraged helical formation while stabilizing the charged site. On the other hand, ProbeA 2,3 peptides formed charge-solvated coils which do not exhibit any kind of dipole effect, resulting in lower basicity than their A2,3Probe counterpart.
|
525 |
Characterization of AG10, a potent stabilizer of transthyretin, and its application in enhancing in vivo half-life of therapeutic peptidesPenchala, Sravan C. 01 January 2016 (has links)
The misassembly of soluble proteins into toxic aggregates, including amyloid fibrils, underlies a large number of human degenerative diseases. Cardiac amyloidoses, which are most commonly caused by aggregation of Immunoglobulin (Ig) light chains or transthyretin (TTR) in the cardiac interstitium and conducting system, represent an important and often underdiagnosed cause of heart failure. Two types of TTR-associated amyloid cardiomyopathies are clinically important. The Val122Ile (V122I) mutation, which alters the kinetic stability of TTR and affects 3% to 4% of African Americans, can lead to development of familial amyloid cardiomyopathy. In addition, aggregation of WT TTR in individuals older than age 65 years causes senile systemic amyloidosis. TTR-mediated amyloid cardiomyopathies are chronic and progressive conditions that lead to arrhythmias, biventricular heart failure, and death. As no Food and Drug Administration-approved drugs are currently available for treatment of these diseases, the development of therapeutic agents that prevent TTR-mediated cardiotoxicity is desired. Here, we report the characterization of AG10 , a potent and selective kinetic stabilizer of TTR. AG10 prevents dissociation of V122I-TTR in serum samples obtained from patients with familial amyloid cardiomyopathy. In contrast to other TTR stabilizers currently in clinical trials, AG10 stabilizes V122I- and WT-TTR equally well and also exceeds their efficacy to stabilize WT and mutant TTR in whole serum. Crystallographic studies of AG10 bound to V122I-TTR give valuable insights into how AG10 achieves such effective kinetic stabilization of TTR, which will also aid in designing better TTR stabilizers. The oral bioavailability of AG10 , combined with additional desirable drug-like features, makes it a very promising candidate to treat TTR amyloid cardiomyopathy. The second part of the thesis discusses harnessing TTR as a platform to enhance in vivo half-life of therapeutic peptides. The tremendous therapeutic potential of peptides has not yet been realized, mainly owing to their short in vivo half-life. Although conjugation to macromolecules has been a mainstay approach for enhancing protein half-life, the steric hindrance of macromolecules often harms the binding of peptides to target receptors, compromising the in vivo efficacy. Here we report a new strategy for enhancing the in vivo half-life of a model peptide Gonadotropin Releasing Hormone (GnRH) and its analog GnRH-A without compromising their potency. Apart from GnRH, we have used other peptides to study their proteolytic stability in vitro . Our approach involves endowing peptides with a small molecule that binds reversibly to the serum protein transthyretin. Although there are a few molecules that bind albumin reversibly, we are unaware of designed small molecules that reversibly bind other serum proteins and are used for half-life extension in vivo . We show here that our strategy was effective in enhancing the half-life of an agonist for GnRH receptor while maintaining its binding affinity, which was translated into superior in vivo efficacy.
|
526 |
Very accurate gas-phase thermochemistry through photoelectron photoion coincidence (PEPICO) spectroscopyBorkar, Sampada N. 01 January 2013 (has links)
Five projects are presented here that use Photoelectron Photoion Coincidence (PEPICO) Spectroscopy to determine high-accuracy thermochemical data on small and intermediate size molecules and radicals that are relevant in modeling combustion and atmospheric processes. Some of the experiments were carried out on the laboratory-based Threshold PEPICO (TPEPICO) apparatus which has the advantage of having a low-temperature inlet system and unlimited measurement time, while most of the projects involved the use of the Imaging PEPICO (iPEPICO) apparatus at the Swiss Light Source, which is capable to determine ionic dissociation energies to sub-kJ/mol accuracy. The iPEPICO on the synchrotron beamline was also useful where measurements required energies in excess of 14 eV. The modeling framework of PEPICO is based on the RRKM statistical theory of dissociation kinetics and statistical energy distributions and models complex dissociation pathways to extract both kinetics and thermochemical data from the experiment. In the first project, we measured the onsets of Br- and I-loss reactions for C 2 H 5 Br and C 2 H 5 I using TPEPICO, respectively. The heats of formations of the two molecules are related through the ethyl cation, which was used in their determination. The second project involved measuring Cl-loss from four S i O j Cl k compounds viz. SCl 2 , S 2 Cl 2 , SOCl 2 , and SO 2 Cl 2 to obtain reliable thermochemistry. The second Cl-loss from S 2 Cl 2 + and SOCl 2 + helped us conclude that assuming three-dimensional translational degrees of freedom yields a more reliable statistical model of product-energy distributions. The third project investigated methanol and its isotopologues to explore the dissociation pathways through the H/D-losses. The 0 K appearance energies were used to determine the accurate heat of formation of CH 2 OH and the proton affinity of formaldehyde. The fourth project explores the dissociation pathways of cis -1-bromopropene, trans -1-bromopropene, 2-bromopropene, 3-bromopropene and bromocyclopropane to find that except for 2-bromopropene, all other isomers dissociate into the allyl cation. To derive accurate thermochemical information on the neutral precursors, a mixed theoretical and experimental thermochemical network was used to determine their 0 K heats of formation. The last project involves measurements on dimethyl disulfide (DMDS) and dimethyl diselenide, which are the simplest models that can be used to study disulfide and diselenide linkages. There are several discrepancies in the thermochemistry of DMDS, whereas ours is the first experimental attempt to study the ionic thermochemistry of dimethyl diselenide experimentally.
|
527 |
Interactions of small molecules with duplex DNA and lesion containing G-quadruplex DNAChitranshi, Priyanka 01 January 2013 (has links)
The low redox potential of guanines (G 1.29 V vs. NHE) compared to other nucleobases, makes them potentially susceptible to attack by exogenous and endogenous damaging species. This property of guanine has also been utilized for the development of several anticancer agents including the well-known platinum complexes, cisplatin and carboplatin. The two closely related nickel complexes, NiCR and NiCR-2H, exhibit significant differences in cytotoxicity towards MCF-7 cancer cells. In the first part of this work, we explain this difference using biochemical and biophysical approaches to study their interactions with duplex DNA. The nickel complexes were found to selectively oxidize guanines in bulged DNA structures in the presence of oxidant and notably NiCR-2H oxidizes guanines more efficiently than NiCR. According to 1 H NMR studies, NiCR-2H binds strongly to the N7 position of dGMP compared to NiCR and could be an important oxidation product of NiCR under physiological conditions. The second part of this work focuses on the secondary DNA structures known as G-quadruplex formed in the guanine rich telomeric region. G-quadruplex is formed by stacking of G-quartets (a coplanar cyclic array of four Gs) on top of each other. Its formation is known to inhibit the activity of the reverse transcriptase telomerase that is overexpressed in 80-90% cancer cells. The guanines in telomeric DNA are readily oxidized due to their low redox potential and the major oxidation product is 7, 8-dihydro-8-oxoguanine (OxodG). OxodG (0.58 V vs. NHE) can further be oxidized in the presence of one electron oxidants and the resulting product forms adducts with endogenous nucleophiles such as spermine. In light of these findings, we hereby designed and synthesized novel bifunctional perylene derivatives that can selectively bind to the telomeric DNA via G-quadruplex formation and subsequently react with OxodG in close proximity. These compounds have strong binding affinity towards G-quadruplex and can significantly stabilize the OxodG containing G-quadruplex motif by end stacking on the upper G-quartet. The effect of these compounds on telomerase activity and cytotoxicity towards Hep3B cancer cells was also evaluated.
|
528 |
Fliposomes: pH-sensitive liposomes comprising novel trans-2-aminocyclohexanol-based amphiphiles as conformational switches for the liposome mebraneLiu, Xin 01 January 2013 (has links)
As a promising pH-triggerable molecular switch, trans -2-aminocyclohexanol (TACH) has a variety of applications. By introducing two hydrocarbon tails, multiple TACH-based lipids (flipids) have been designed and studied that are able to perform a drastic conformational flip upon protonation, loosening the stacking of hydrocarbon tails in lipid bilayers. Liposomes constructed from such flipids (fliposomes) can be disrupted by this acid-triggered conformational flip to cause a rapid release of a cargo specifically in areas of increased acidity (such as inflammation or ischemic tissues, solid tumor, and endosome pathway). A library of flipids has been built based on structural modifications of both amino headgroups and hydrophobic tails. A series of fliposomes have been constructed and their colloidal stability, capacity and pH-dependent leakage were investigated. A good correlation between the conformational switch of flipids studied by 1 H-NMR and the fliposomes' leakage indicated that the former is a cause for the latter. The obtained results showed that all the properties of fliposomes can be manipulated by selection of the amino headgroups structure and basicity, and the length and shape of hydrophobic tails, by using mixtures of different flipids or fliposomes, and by changing the content of flipids while constructing fliposomes. As a result, we prepared the pH-triggerable fliposomes with extraordinary characteristics: high stability in storage combined with instant release of their cargo in response to a weakly acidic medium. Fliposomes encapsulating the anticancer drug methotrexate (MTX) were applied to HeLa cells and demonstrated much higher cytotoxicity than the free drug and negative controls, indicating that they could conduct more efficient cellular delivery of MTX. The MTX-loaded fliposomes inhibited tumor growth in B16F1-melanoma-bearing nude mice compared to the control group, suggesting the anticancer activity of MTX delivered by pH-triggerable fliposomes in vivo. The results of research demonstrated the potential of fliposomes to serve as a viable drug delivery system.
|
529 |
Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproductsYao, Yuan 01 January 2012 (has links)
Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M 1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental acceptance and economic feasibility of this technology and found that this silica alumina-based cementitious material not only meets EPA requirements but also shows several advantages in industrial application.
|
530 |
Synthesis and applications of functional magnetic polymer beads; synthesis and mass spectrometry analysis of model peptidesZhao, Xiaoning 01 January 2012 (has links)
The first part of the thesis describes the synthesis and application of functional magnetic polymer beads. The traditional suspension polymerization approach was used to synthesize polystyrene-iron oxide (Fe 3 O 4 ) based magnetic beads. The beads were coupled to different surface functional groups. The Fe 3 O 4 particles were encapsulated into a polystyrene shell. The surface functional groups were generated by graft-polymerization with functional monomers. The average size of the beads was in the range of 100-500 μm. Chemical tests showed that the beads were stable in strong acid, strong base and polar solvent. The beads had a fast response to an external magnetic field. A self-emulsion-polymerization approach was developed to synthesize smaller magnetic beads with the - OH groups on the surface. A modified approach based on traditional suspension-polymerization was developed to synthesize acid-durable beads with more Fe 3 O 4 encapsulated inside the beads. A novel emulsion-suspension polymerization method was successfully developed to synthesize much smaller magnetic beads ( A new peptide synthesis approach was developed using functional magnetic beads as the resin for solid phase synthesis. In this application, synthesized magnetic beads were further modified by a two-step reaction. The amino group was anchored onto the surface of these beads, followed by coupling with the Rink amide linker. The resulting beads were used as the resin to synthesize several model peptides. The peptides were successfully synthesized, and the sequences were confirmed by mass spectrometry analysis. The yields of the peptides were comparable to those obtained from commercial Rink amide resin. The second part of the thesis describes the synthesis and mass spectrometry analysis of two series of model peptides. One series has the linear (non-cyclic) structure, A n K, KA n , P n K, and AcA n K. The other series contains cyclic peptides, c-Ac-DAKAK and c-Ac-DADapAK. All peptides were synthesized using solid phase peptide synthesis. The relative proton affinities of the model peptides were measured using the collision induced dissociation experiments using a triple quadrupole mass spectrometer. It was found that the effective proton affinity of a cyclic peptide was significantly reduced compared to a linear analogue. The reduced proton affinity implies an increased lipophilicity of the peptide.
|
Page generated in 0.0765 seconds