• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 29
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 118
  • 28
  • 15
  • 14
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Optimalizace přípravy tenkých hydrogelových folií na bázi biokompatibilních polymerů / Optimization of the Preparation of Thin Hydrogel Layers Based on Biocompatible Polymers

Vacková, Barbora January 2021 (has links)
The aim of this master thesis deals with the optimization of the preparation of thin hydrogel films based on polyvinyl alcohol (PVA) with the possibility of incorporating suitable additives (polyelectrolytes, plasticizers, etc.) into the structure of the prepared film to modify its properties. DEAE-Dextran hydrochloride and polyglutamic acid (PGA) were used as polyelectrolytes. The basic characterization of the properties was performed on modified films, which were compared with pure PVA films. The films were characterized by thickness, swelling ability, barrier properties, tensile properties, specific surface area, antimicrobial tests, and thermogravimetric analysis. The swelling ability of PVA/PGA films was very high, which may be a disadvantage for their use in the packaging industry. Swelling increases the amount of water in the matrix of the PVA film, what leads to a higher growth of microorganisms and to degradation of thin film. The water vapor transmission rate was greatly affected by the addition of a plasticizer. The small specific surface area of the films indicates a smooth surface that promotes good barrier properties. Films with the addition of a plasticizer showed relatively good mechanical properties. The values of tensile strength, elongation and elastic modulus were comparable to commercially available films such as polypropylene (PP) or polyethylene (PE). Based on all experiments, PVA, PVA/DEAEDextran films and their variants with the addition of glycerol as a plasticizer were evaluated as the best candidates for the use of these films as packaging materials. The follow-up work could be dealing with the optimization of PVA films for oxygen permeability. Furthermore, the possibilities of using these films in the packaging industry based on the relative humidity of the environment, could be defined as other interesting area of future research.
42

[en] A STUDY ON THE MIXTURE DESIGN AND MECHANICAL PERFORMANCE OF STRAIN-HARDENING GEOPOLYMER COMPOSITES (SHGC) UNDER EXTREME CONDITIONS / [pt] UM ESTUDO SOBRE A DOSAGEM E O DESEMPENHO MECÂNICO DE COMPÓSITOS GEOPOLIMÉRICOS DO TIPO STRAIN-HARDENING (SHGC) SOB CONDIÇÕES EXTREMAS

ANA CAROLINA CONSTANCIO TRINDADE 04 November 2021 (has links)
[pt] Geopolímeros possuem uma pluralidade química em seu design que permite a obtenção de propriedades variadas dependendo da demanda, tanto em termos de materiais cerâmicos de alta tecnologia quanto no desenvolvimento de soluções construtivas. São obtidos a partir da combinação de precursores alumino silicatos e soluções alcalinas, com diferentes processos de endurecimento, dependendo das condições de cura e equilíbrio químico. No estado endurecido, apresentam um comportamento frágil, sendo geralmente reforçados com fibras e agregados na melhoria do desempenho mecânico. Por serem materiais relativamente novos, é necessário avaliar com precisão sua capacidade em condições usuais e extremas para atender a diversas demandas específicas do mercado. Tais condições incluem solicitações estáticas e dinâmicas, bem como a exposição a altas temperaturas, que são os principais pontos de análise deste estudo. Para isso, diferentes precursores, como metacaulim e cinzas volantes, e soluções alcalinas, à base de sódio e potássio, foram estudados quanto à reologia e ganho de resistência de acordo com o processo de cura utilizado. Esses foram parâmetros fundamentais na seleção de matrizes capazes de incorporar 2 por cento em vol. de fibras curtas de PVA e PE sintéticas. Os compósitos do tipo strain-hardening (SHGC) foram então caracterizados através de ensaios mecânicos típicos, tais como compressão, flexão, tração, arrancamento, em carregamentos estáticos e dinâmicos, e sob exposições regulares e de alta temperatura (até 200 graus C), sendo analisados posteriormente por meio de procedimentos típicos analíticos e de imagem. No geral, a combinação de metacaulim de alta reatividade com soluções alcalinas a base de sódio apresentou melhores performances em SHGC, com e sem a incorporação de agregados, atingindo ganhos de resistência e múltipla fissuração quando reforçado com ambas as fibras curtas de PVA e PE, sendo a última responsável pela maior efetividade mecânica do compósito quando exposto a carregamento quase-estáticos em de impacto. Esse comportamento, no entanto, não se repetiu ao ser exposto a temperaturas elevadas, com maiores reduções na resistência residual devido ao ponto de fusão do PE (150 graus C), em comparação a um maior valor para PVA (240 graus C), sendo então este mais efetivo em aplicações extremas deste tipo. Quando comparado a comportamentos típicos de SHCC, SHGC demonstrou uma maior eficiência tanto mecânica quanto térmica, apresentando resultados inéditos em carregamentos de impacto, gerando assim uma enorme quantidade de aplicações potenciais. / [en] Geopolymers possess a chemical plurality in their design that allow the achievement of varied properties depending on demand, both in terms of high-tech ceramic materials and development of constructive solutions. They are obtained from the combination of aluminosilicate precursors and alkaline solutions, with different hardening processes, depending on the curing conditions and chemical balance. In the hardened state, they present a fragile behavior, being then usually reinforced with fibers and aggregates aiming to improve their mechanical performance. As they are relatively new materials, there is a need to accurately assess their capacity under usual and extreme conditions to meet several specific market demands. Such extreme conditions include static and dynamic loading, as well as exposure to high temperatures, which are the major points of analysis in this study. For this, different precursors, such as metakaolin and fly ash, and alkaline solutions, based on sodium and potassium, were studied regarding rheology in the fresh state, and evolution of strength gain according to the curing process used. These were fundamental parameters in the selection of matrices able to achieve an adequate balance between fluidity and viscosity to incorporate 2 percent by volume of synthetic PVA and PE short fibers. The strain-hardening geopolymer composites (SHGC) were then characterized through typical mechanical tests, such as compression, flexural, tensile, pull-out, in quasi-static and impact loadings, and under regular and high temperature exposures (up to 200 C degrees), being further analyzed through imaging and analytical procedures. In general, high reactivity metakaolin combined with Na-based alkaline solutions demonstrated a superior SHGC performance, with and without aggregate incorporation, reaching stress gains and multiple cracking formation when reinforced with both PVA and PE short fibers, the latter being responsible for greater mechanical efficiency when exposed to quasi-static and impact loading. This behavior, however, was not reiterated when exposed to high temperatures, with higher residual strength reductions due to the melting point of PE (at 150 C degrees), opposed to an increased performance of PVA (240 C degrees), being thus more effective at such extreme application. When compared to typical SHCC behavior, SHGC reached greater efficiency both mechanically and thermally, showing unprecedented results in impact loading, thus demonstrating varied application potential.
43

Influence of fiber type and matrix composition on the tensile behavior of strain-hardening cement-based composites (SHCC) under impact loading / Zum Einfluss der Faserart und Matrixzusammensetzung auf das Zugverhalten von hochduktilem Beton bei Impaktbeanspruchung / Schriftenreihe des Institutes für Baustoffe ; Heft 2018/1

Curosu, Iurie 29 March 2018 (has links) (PDF)
Strain-hardening cement-based composites (SHCC) are a special class of fiber-reinforced concrete which develop multiple, fine cracks when subjected to increasing tensile loading, reaching strain capacities of up to several percent. The tensile behavior of SHCC is a result of a purposeful material design accounting for the mechanical and physical properties of the cementitious matrix, of the reinforcing fibers and of their interaction. The exceptionally high energy dissipation through inelastic deformations before reaching tensile strength makes SHCC suitable for manufacturing or strengthening of structural elements which may be subjected to impact loading. However, the tensile behavior of SHCC is highly strain rate dependent, both in terms of tensile strength and strain capacity. The different strain rate sensitivities of the constitutive phases of SHCC (matrix, fiber and interfacial bond) lead to disproportionate dynamic alteration of their mechanical properties under increasing strain rates and, consequently, to an impairment of the micromechanical balance necessary for strain-hardening and multiple cracking. Thus, high energy dissipation under impact loading can only be ensured through a targeted material design. This work presents a series of mechanical experiments at different strain rates and different scales of investigation with the goal of developing a qualitative and quantitative basis for formulating material design recommendations for impact resistant SHCC. Three different types of SHCC were investigated, consisting of two types of polymer fibers (polyvinyl-alcohol and high-density polyethylene) and cementitious matrices (normal-strength and high-strength). Uniaxial tension experiments were performed on SHCC specimens and on non-reinforced matrix specimens with different testing setups at strain rates ranging from 10-4 to 150 s-1. Besides the measured mechanical properties, special attention was paid to the crack patterns and the condition of fracture surfaces. Additionally, micro-scale investigations were performed to quantify the strain rate dependent changes in the mechanical behavior of individual component phases, i.e., matrix, fibers and fiber-matrix bond. The results obtained from the micromechanical investigations were used in an analytical model for crack bridging. The model links the micromechanical parameters and their strain rate sensitivities to the single-crack opening behavior under increasing displacement rates, making it useful for material design purposes. If given an extensive experimental basis for the fracture mechanical properties of the non-reinforced cementitious matrices, the model can be extended for predicting the strain capacity (multiple cracking) of SHCC under different strain rates. / Die hochduktilen Betone (Engl.: Strain-Hardening Cement-based Composites – SHCC) bilden eine besondere Klasse von Faserbetonen, die eine multiple Rissbildung unter zunehmenden Zugspannungen aufweisen, was zu einer sehr hohen Bruchdehnung führt. Das dehnungsverfestigende, hochduktile Zugverhalten der SHCC wird durch eine gezielte Materialentwicklung erreicht, die die mechanischen und physikalischen Eigenschaften der zementgebundenen Matrizen, der Kurzfasern und deren Zusammenwirkung berücksichtigt. Das außergewöhnliche Energieabsorptionsvermögen der SHCC durch plastische Verformungen vor dem Erreichen der Zugfestigkeit qualifiziert diese Verbundwerkstoffe für die Herstellung oder Verstärkung von Bauteilen, die Impaktbeanspruchungen ausgesetzt sein könnten. Jedoch weisen SHCC sowohl bezüglich deren Zugfestigkeit als auch deren Dehnungskapazität ein ausgeprägtes dehnratenabhängiges Verhalten auf. Unter zunehmenden Dehnraten führen die unterschiedlichen Dehnratensensitivitäten der gestaltenden Phasen von SHCC (Matrix, Faser und deren Verbund) zur Beeinträchtigung des mikromechanischen Gleichgewichts, welches für die Dehnungsverfestigung und multiple Rissbildung erforderlich ist. Eine hohe Energiedissipation unter Impaktbeanspruchungen kann deshalb nur durch eine gezielte Materialentwicklung der SHCC hinsichtlich deren Verhaltens unter hohen Dehnraten gewährleistet werden. Die vorliegende Arbeit umfasst eine Reihe von experimentellen Untersuchungen mit verschiedenen Dehnraten und an unterschiedlichen Betrachtungsebenen, mit dem Ziel eine qualitative und quantitative Basis für Empfehlungen zur Materialentwicklung von Impakt-resistenten SHCC zu schaffen. Drei verschiedene SHCC-Zusammensetzungen wurden untersucht. Die Referenz-Zusammensetzung aus einer normalfesten zementgebundenen Matrix und Polyvinyl-Alkohol-Kurzfasern wurde mit zwei unterschiedlichen SHCC verglichen (hochfest und normalfest), die mit Kurzfasern aus hochdichtem Polyethylen bewehrt wurden. Einaxiale Zugversuche wurden an SHCC-Proben und unbewehrten Matrix-Proben mit verschiedenen Prüfvorrichtungen bei Dehnraten von 10-4 bis 150 s-1 durchgeführt. Zusätzlich zu den gemessenen mechanischen Eigenschaften wurden die Rissbildung und die Bruchflächen detailliert untersucht. Darüber hinaus wurden mikromechanische Untersuchungen durchgeführt, um die Dehnratensensitivität der einzelnen Phasen, d.h. Matrix, Faser und deren Verbund zu beschreiben. Die aus den mikromechanischen Untersuchungen erzielten Ergebnisse wurden als Eingangswerte in einem analytischen Einzelriss-Modell verwendet. Das entwickelte Modell verbindet die mikromechanischen Parameter und deren Dehnratenabhängigkeit mit dem Rissöffnungsverhalten von SHCC bei zunehmenden Verschiebungsraten. Das macht es vorteilhaft für Materialentwicklungszwecke. Das Modell kann für die Vorhersage der Dehnungskapazität von SHCC bei diversen Dehnraten weiterentwickelt werden, wenn eine umfassende experimentelle Basis für die bruchmechanischen Eigenschaften der Matrizen vorliegt.
44

Humidity micro switch based on humidity-sensitive polymers

Bellmann, C., Steinke, A., Frank, T., Gerlach, G. 29 August 2019 (has links)
We present recent results on a binary threshold sensor based on the binary zero-power sensor (BIZEPS) platform which is able to use the energy provided directly from the measured relative humidity of the ambient air to mechanically switch an electrical micro contact. This zero-power switch behavior is realized by using the humidity-sensitive volume swelling of a polymer layer as the detection element deflecting a mechanically deformable silicon boss structure, thus closing the electrical contacts of the switch. For the humidity-sensitive sensor switch considered here, a humidity-sensitive hydrogel blend of poly(vinyl alcohol) and poly(acryl acid) was used. The sensitive part affected by the measurand is completely separated from the electrical part, thus providing long-term stability. By using an inverse silicone stamping technique the polymer layer with a thickness of about 15 μm was patterned on test structures possessing a thin silicon flexure plate of 5 mm x 5 mm in size and 20 μm in thickness. Reproducible deformations of up to 15 … 24 μm has been measured. Investigations of the swelling kinetics showed for several discrete relative humidity values a saturation of the water load. The time to reach this saturation state is reduced from 5 hours down to approx. 20 min by increasing the relative humidity beyond the threshold value of 70% r.H. A significant influence of the temperature to the humidity load could not be observed.
45

[pt] COMPORTAMENTO MECÂNICO DE COMPÓSITOS CIMENTÍCIOS DO TIPO SHCC UTILIZANDO REFORÇOS HÍBRIDOS / [en] MECHANICAL BEHAVIOUR OF HYBRID FIBER-REINFORCED STRAIN HARDENING CEMENTITIOUS COMPOSITES

15 September 2020 (has links)
[pt] O presente trabalho investigou o comportamento mecânico de compósitos cimentícios do tipo SHCC (Strain Hardening Cementitious Composites) de resistência comum e alta resistência, reforçados com fibras de PVA, UHMWPE (polietileno de peso molecular ultra-elevado), aço e reforços híbridos. Para o estudo, o volume total de fibras foi mantido constante em 2,0 por cento, com objetivo de manter a trabalhabilidade dos compósitos. As fibras de PVA e polietileno foram parcialmente substituídas por fibras de aço na proporção de 0,5 por cento e 1,0 por cento e a resposta mecânica foi estudada a partir de ensaios de tração direta, flexão de quatro pontos em placas e ensaios de flexão de três pontos em prismas com entalhe. O padrão de fissuração foi analisado utilizando imagens de alta resolução. O efeito escala dos compósitos reforçados com fibras de PVA e polietileno também foi investigado através de ensaios de tração direta e de flexão de quatro pontos utilizando dois tamanhos de corpos de prova. Os resultados mostraram que as fibras de PVA têm melhor desempenho que as fibras de polietileno para matrizes de resistência comum e que para ambas as matrízes, a substituição parcial das fibras de polietileno e PVA por fibras de aço tem o benefício de aumentar a resistência, mas promove redução na capacidade de deformação dos compósitos. O estudo sobre o efeito-escala também mostrou que a resposta mecânica destes materiais muda com a geometria dos corpos de prova. Por último, os compósitos foram utilizados como materiais de reparo estrutural em vigas submetidas a dano prévio e os resultados mostraram a viabilidade da utilização do SHCC como material de reparo. / [en] The present work investigated the mechanical behavior of normal and highstrength Strain Hardening Cementitious Composites (SHCC) reinforced with PVA, UHMWPE (ultra-high molecular weight polyethylene), steel and hybrid fibers. For the study, the total volume of fibers was kept constant at 2.0 percent in order to maintain the workability of the composite system. PVA and polyethylene were partially replaced by steel fibers in 0.5 percent and 1.0 percent. The mechanical response was measured under direct tension tests, four-point bending tests on plates and three point-bending tests on notched specimens. The crack pattern was investigated using high resolution image capturing procedure. The size-effect of the composites reinforced with PVA and polyethylene fibers was also investigated under direct tension test and four-point bending tests using two sizes of specimens. The results have shown that PVA fibers have a better performance than polyethylene fibers for normal strength matrices and that for both normal and high strength matrices the partial replacement of polyethylene and PVA fibers by steel fibers has the benefit of increasing the strength, but it reduces the strain capacity of the composites. The investigation about the size-effect also have shown that mechanical response of these composites changes with the geometry of the specimens. Finally, the composites were used as structural repair in beams subjected to previous damage and the results verified the feasibility of SHCC as a repair material.
46

Influence of fiber type and matrix composition on the tensile behavior of strain-hardening cement-based composites (SHCC) under impact loading

Curosu, Iurie 29 March 2018 (has links)
Strain-hardening cement-based composites (SHCC) are a special class of fiber-reinforced concrete which develop multiple, fine cracks when subjected to increasing tensile loading, reaching strain capacities of up to several percent. The tensile behavior of SHCC is a result of a purposeful material design accounting for the mechanical and physical properties of the cementitious matrix, of the reinforcing fibers and of their interaction. The exceptionally high energy dissipation through inelastic deformations before reaching tensile strength makes SHCC suitable for manufacturing or strengthening of structural elements which may be subjected to impact loading. However, the tensile behavior of SHCC is highly strain rate dependent, both in terms of tensile strength and strain capacity. The different strain rate sensitivities of the constitutive phases of SHCC (matrix, fiber and interfacial bond) lead to disproportionate dynamic alteration of their mechanical properties under increasing strain rates and, consequently, to an impairment of the micromechanical balance necessary for strain-hardening and multiple cracking. Thus, high energy dissipation under impact loading can only be ensured through a targeted material design. This work presents a series of mechanical experiments at different strain rates and different scales of investigation with the goal of developing a qualitative and quantitative basis for formulating material design recommendations for impact resistant SHCC. Three different types of SHCC were investigated, consisting of two types of polymer fibers (polyvinyl-alcohol and high-density polyethylene) and cementitious matrices (normal-strength and high-strength). Uniaxial tension experiments were performed on SHCC specimens and on non-reinforced matrix specimens with different testing setups at strain rates ranging from 10-4 to 150 s-1. Besides the measured mechanical properties, special attention was paid to the crack patterns and the condition of fracture surfaces. Additionally, micro-scale investigations were performed to quantify the strain rate dependent changes in the mechanical behavior of individual component phases, i.e., matrix, fibers and fiber-matrix bond. The results obtained from the micromechanical investigations were used in an analytical model for crack bridging. The model links the micromechanical parameters and their strain rate sensitivities to the single-crack opening behavior under increasing displacement rates, making it useful for material design purposes. If given an extensive experimental basis for the fracture mechanical properties of the non-reinforced cementitious matrices, the model can be extended for predicting the strain capacity (multiple cracking) of SHCC under different strain rates. / Die hochduktilen Betone (Engl.: Strain-Hardening Cement-based Composites – SHCC) bilden eine besondere Klasse von Faserbetonen, die eine multiple Rissbildung unter zunehmenden Zugspannungen aufweisen, was zu einer sehr hohen Bruchdehnung führt. Das dehnungsverfestigende, hochduktile Zugverhalten der SHCC wird durch eine gezielte Materialentwicklung erreicht, die die mechanischen und physikalischen Eigenschaften der zementgebundenen Matrizen, der Kurzfasern und deren Zusammenwirkung berücksichtigt. Das außergewöhnliche Energieabsorptionsvermögen der SHCC durch plastische Verformungen vor dem Erreichen der Zugfestigkeit qualifiziert diese Verbundwerkstoffe für die Herstellung oder Verstärkung von Bauteilen, die Impaktbeanspruchungen ausgesetzt sein könnten. Jedoch weisen SHCC sowohl bezüglich deren Zugfestigkeit als auch deren Dehnungskapazität ein ausgeprägtes dehnratenabhängiges Verhalten auf. Unter zunehmenden Dehnraten führen die unterschiedlichen Dehnratensensitivitäten der gestaltenden Phasen von SHCC (Matrix, Faser und deren Verbund) zur Beeinträchtigung des mikromechanischen Gleichgewichts, welches für die Dehnungsverfestigung und multiple Rissbildung erforderlich ist. Eine hohe Energiedissipation unter Impaktbeanspruchungen kann deshalb nur durch eine gezielte Materialentwicklung der SHCC hinsichtlich deren Verhaltens unter hohen Dehnraten gewährleistet werden. Die vorliegende Arbeit umfasst eine Reihe von experimentellen Untersuchungen mit verschiedenen Dehnraten und an unterschiedlichen Betrachtungsebenen, mit dem Ziel eine qualitative und quantitative Basis für Empfehlungen zur Materialentwicklung von Impakt-resistenten SHCC zu schaffen. Drei verschiedene SHCC-Zusammensetzungen wurden untersucht. Die Referenz-Zusammensetzung aus einer normalfesten zementgebundenen Matrix und Polyvinyl-Alkohol-Kurzfasern wurde mit zwei unterschiedlichen SHCC verglichen (hochfest und normalfest), die mit Kurzfasern aus hochdichtem Polyethylen bewehrt wurden. Einaxiale Zugversuche wurden an SHCC-Proben und unbewehrten Matrix-Proben mit verschiedenen Prüfvorrichtungen bei Dehnraten von 10-4 bis 150 s-1 durchgeführt. Zusätzlich zu den gemessenen mechanischen Eigenschaften wurden die Rissbildung und die Bruchflächen detailliert untersucht. Darüber hinaus wurden mikromechanische Untersuchungen durchgeführt, um die Dehnratensensitivität der einzelnen Phasen, d.h. Matrix, Faser und deren Verbund zu beschreiben. Die aus den mikromechanischen Untersuchungen erzielten Ergebnisse wurden als Eingangswerte in einem analytischen Einzelriss-Modell verwendet. Das entwickelte Modell verbindet die mikromechanischen Parameter und deren Dehnratenabhängigkeit mit dem Rissöffnungsverhalten von SHCC bei zunehmenden Verschiebungsraten. Das macht es vorteilhaft für Materialentwicklungszwecke. Das Modell kann für die Vorhersage der Dehnungskapazität von SHCC bei diversen Dehnraten weiterentwickelt werden, wenn eine umfassende experimentelle Basis für die bruchmechanischen Eigenschaften der Matrizen vorliegt.
47

Synthesis and characterization of cationically and anionically modified poly(vinyl alcohol) microfibrils

Chirowodza, Helen 03 1900 (has links)
Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2009. / In papermaking, the addition of filler can be detrimental to the properties of the resulting paper hence the use of additives that enhance paper properties are of paramount importance. Syndiotacticity rich poly(vinyl alcohol) (PVA) microfibrils were prepared for use as filler retention aids. They were prepared via in situ fibrillation during the saponification of high molecular weight poly(vinyl pivalate). The resulting fibers had high thermal stability and crystalline melting temperature. They were not fully soluble in water even at 100 oC. In order to make them less water resistant the syndiotacticity of the PVA microfibrils was varied by copolymerizing vinyl pivalate with vinyl acetate and saponifying the resultant copolymer. It was observed that changes in syndiotacticity had a significant effect on the crystallinity, morphology and thermal properties of the resultant PVA. The surfaces of the fibers were modified by first crosslinking using glyoxal (a dialdehyde), and then attaching cationic and anionic groups by grafting and by carboxymethylation. Crosslinking prior to modification was beneficial in minimizing the solubility of the fibers in the aqueous media in which they were modified. Heterogeneous modification techniques were employed so that fiber properties could be preserved. Carboxymethylation was carried out using the two step Williamson’s ether synthesis. The first step involves the formation of a highly reactive alkoxide by the reaction of PVA with a strong base and the second its etherification using a functional alkyl halide. Poly(methacryloyloxy ethyl trimethyl ammonium chloride) and poly(acrylic acid) were grafted from the PVA microfibrils using the KPS/Na2S2O3 redox initiation system. Grafting was confirmed by FTIR and NMR spectroscopy. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were carried out on both modified and unmodified PVA microfibrils. The results showed that crosslinking resulted in an enhancement of the thermal properties of the microfibrils. A decline in the onset temperature for thermal degradation and crystalline melting temperature were observed, and were attributed to the modification of the PVA microfibrils.
48

Polyvinyl alcohol surface modification

Thomas, Matthew Rhys January 2011 (has links)
Poly(vinyl alcohol) (PVA) is a polymer used in numerous applications, principally those in which its high water solubility is a desirable asset. However there are also areas where PVA is limited by its inherent solubility (for example some specific environments in the biomedical field). This work has sought to overcome such limits by manipulating the surface of PVA in order to propose various means by which the surface solvent resistance might be increased while maintaining the bulk properties of the polymer. Both chemical and physical modifications have been tried and in each case progress has been made towards insolubilizing a single surface of the polymer when in film form. Grafting various species onto the surface of PVA was successfully performed. It is believed that such species bonded to the PVA via attachment to the hydroxyl groups (though this has not been proven conclusively). The data contained herein has led to the conclusion that the primary factor in reducing solubility this way is the removal of the hydroxyl groups, and not the attachment of specifically highly hydrophobic molecules. Introducing permanent cross-links into the surface region has been attempted via various routes. The data recorded shows promise however the system is far from optimised. The biggest challenge remaining is to optimise the depth of material cross-linked. Some steps have been made towards understanding and controlling this parameter though there is much scope for further investigation. The methods used have built on those used for bulk cross-linking and as such are new for the case of surface specific treatment. An interesting phenomenon in some semi-crystalline polymers reported in recent years is that of surface specific crystallization. This effect has been successfully induced and observed in PVA to produce what is believed to be a highly crystalline surface layer, and crystalline regions of PVA are generally accepted to be more water resistant than amorphous ones. In summary, in this work several surface-specific treatments for PVA have been trialled, providing options for post-film forming modification to reduce the surface water sensitivity whilst retaining the bulk properties of the polymer.
49

Modelización del comportamiento holográfico de un fotopolímero de polivinilalcohol/acrilamida

Gallego, Sergi 14 January 2005 (has links)
Ministerio de Ciencia y Tecnología (CICYT), proyecto "Polímeros fluorescentes para aplicaciones en técnicas láser dirigidas al desarrollo de un dispositivo para almacenamiento holográfico de información" MAT2000-1361-C04-04.
50

Fabricação de transistor orgânico de efeito de campo sobre substrato plástico flexível

Van Etten, Eliana Antunes Maciel Aquino January 2017 (has links)
elementares da eletrônica orgânica, vêm sendo desenvolvidos e integrados para realização de dispositivos eletrônicos de baixo custo, alto volume e flexíveis. Nesta tese foi proposta uma tecnologia para a construção de OFETs sobre substrato flexível e a caracterização destes dispositivos foi feita. Transistores com diferentes comprimentos de canal (L= 5, 10, 20 e 40 μm) foram construídos e avaliados. As características e configuração do poli (álcool vinílico) (PVA) como dielétrico de porta foram definidas através da otimização da reticulação, grau de hidrólise e peso molecular. O PVA utilizado como dielétrico de porta foi de alto peso molecular, hidrolização incompleta e reticulado com dicromato de amônia. O desafio de compatibilização entre os filmes de PVA e poli (3-hexiltiofeno) (P3HT) com diferentes polaridades foi superado e abriu caminho para construção de OFETs e capacitores, estes últimos usados para extrair a capacitância por unidade de área do conjunto PVA-P3HT. Os processos desenvolvidos de fotolitografia e de oxidação por plasma de oxigênio possibilitaram a construção de transistores flexíveis inéditos de Ni-P3HT-PVA-Al com uma arquitetura top-gate, bottom-contacts. Os transistores apresentaram boas características de saída, baixa tensão de operação (< |-6 V|), boa mobilidade (0,015 cm2/V*s) e razões ION/IOFF aceitáveis (~300). A resistência de contato e mobilidade efetiva foram obtidas através do método de linhas de transmissão. Uma boa estabilidade temporal foi atingida, porém ocorreram instabilidades na operação quando os transistores foram testados. A corrente do transistor não se manteve estável, primeiramente aumentou e depois diminuiu com a realização de sucessivas medidas. As razões deste comportamento foram discutidas. Inversores foram demonstrados e caracterizados. O aperfeiçoamento da tecnologia desenvolvida possibilitará a construção de circuitos orgânicos analógicos e digitais para aplicações cotidianas que demandem baixo custo e alto volume. / Organic field effect transistors (OFETs), the elementary components of organic electronics, are constantly developed and integrated to realize low cost, high volume, flexible electronic devices. In this thesis a technology for creating OFETs on flexible substrates is proposed and their characterization is performed. Flexible transistors with different channel lengths (L= 5, 10, 20 and 40 μm) were built and evaluated. The characteristics and configurations of the poly (vinyl alcohol) (PVA) as gate dielectric were defined through the optimization of crosslinking, the degree of hydrolysis and the molecular weight. The chosen PVA is cross-linked with ammonium dichromate, has a high molecular weight and incomplete hydrolization. The challenge of integrating polymers of different polarities: PVA and poly (3-hexyl thiophene) (P3HT), the chosen organic semiconductor, was overcome and opened a path to the construction of OFETs and capacitors. From the later capacitance per unit area was extracted. The developed processes of photolithography and oxygen plasma etching allowed the construction of unprecedented Ni-P3HT-PVA-Al flexible top-gate, bottomcontacts transistors. The transistors showed good output characteristics, low operation voltages (< |-6 V|), acceptable carrier mobilities (0,015 cm2/V*s) and ION/IOFF fractions (~300). Contact resistance and effective mobility were extracted through transmission line method. The transistors showed great temporal stability, but when operated instabilities occurred. The transistor output current first increased and later degraded with successive testing. Organic PMIS inverters were demonstrated and characterized. The optimization of this technology may lead to construction of flexible logic organic devices for everyday applications.

Page generated in 1.2293 seconds