• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 3
  • 3
  • 1
  • Tagged with
  • 37
  • 27
  • 23
  • 21
  • 21
  • 17
  • 16
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Semantic Segmentation of Iron Ore Pellets in the Cloud

Lindberg, Hampus January 2021 (has links)
This master's thesis evaluates data annotation, semantic segmentation and Docker for use in AWS. The data provided has to be annotated and is to be used as a dataset for the creation of a neural network. Different neural network models are then to be compared based on performance. AWS has the option to use Docker containers and thus that option is to be examined, and lastly the different tools available in AWS SageMaker will be analyzed for bringing a neural network to the cloud. Images were annotated in Ilastik and the dataset size is 276 images, then a neural network was created in PyTorch by using the library Segmentation Models PyTorch which gave the option of trying different models. This neural network was created in a notebook in Google Colab for a quick setup and easy testing. The dataset was then uploaded to AWS S3 and the notebook was brought from Colab to an AWS instance where the dataset then could be loaded from S3. A Docker container was created and packaged with the necessary packages and libraries as well as the training and inference code, to then be pushed to the ECR (Elastic Container Registry). This container could then be used to perform training jobs in SageMaker which resulted in a trained model stored in S3, and the hyperparameter tuning tool was also examined to get a better performing model. The two different deployment methods in SageMaker was then investigated to understand the entire machine learning solution. The images annotated in Ilastik were deemed sufficient as the neural network results were satisfactory. The neural network created was able to use all of the models accessible from Segmentation Models PyTorch which enabled a lot of options. By using a Docker container all of the tools available in SageMaker could be used with the created neural network packaged in the container and pushed to the ECR. Training jobs were run in SageMaker by using the container to get a trained model which could be saved to AWS S3. Hyperparameter tuning was used and got better results than the manually tested parameters which resulted in the best neural network produced. The model that was deemed the best was Unet++ in combination with the Dpn98 encoder. The two different deployment methods in SageMaker was explored and is believed to be beneficial in different ways and thus has to be reconsidered for each project. By analysis the cloud solution was deemed to be the better alternative compared to an in-house solution, in all three aspects measured, which was price, performance and scalability.
12

Deep visual place recognition for mobile surveillance services : Evaluation of localization methods for GPS denied environment

Blomqvist, Linus January 2022 (has links)
Can an outward facing camera on a bus, be used to recognize its location in GPS denied environment? Observit, provides cloud-based mobile surveillance services for bus operators using IP cameras with wireless connectivity. With the continuous gathering of video information, it opens up new possibilities for additional services. One service is to use the information with the technology, visual place recognition, to locate the vehicle, where the image was taken. The objective of this thesis has been to answer, how well can learnable visual place recognition methods localize a bus in a GPS denied environment and if a lightweight model can achieve the same accurate results as a heavyweight model. In order to achieve this, four model architecture has been implemented, trained and evaluate on a created dataset of interesting places. A visual place recognition application has been implemented as well, in order to test the models on bus video footage. The results show that the heavyweight model constructed of VGG16 with Patch-NetVLAD, performed best on the task with different recall@N values and got a recall@1 score of 92.31%. The lightweight model that used the backbone of MobileNetV2 with Patch-NetVLAD, scored similar recall@N results as the heavyweight model and got the same recall@1 score. The thesis shows that, with different localization methods, it is possible for a vehicle to identify its position in a GPS denied environment, with a model that could be deploy on a camera. This work, impacts companies that rely on cameras as their source of service.
13

Designing a Performant Ablation Study Framework for PyTorch

Molinari, Alessio January 2020 (has links)
PyTorch is becoming a really important library for any deep learning practitioner, as it provides many low-level functionalities that allow a fine-grained control of neural networks from training to inference, and for this reason it is also heavily used in deep learning research, where ablation studies are often conducted to validate neural architectures that researchers come up with. To the best of our knowledge, Maggy is the first open-source framework for asynchronous parallel ablation studies and hyperparameter optimization for TensorFlow, and in this work we added important functionalities such as the possibility to execute ablation studies on PyTorch models as well as the generalization of feature ablation on any data type. This work also shows the main challenges and interesting points of developing a framework on top of PyTorch and how these challenges have been addressed in the extension of Maggy. / PyTorch blir ett oerhört viktigt bibliotek för alla utövare inom djupinlärning, detta eftersom PyTorch innehåller flertalet lågnivåfunktioner som möjliggör en finkorning kontroll av neurala nätverk - från träning till inferens. Av den anledningen används PyTorch också kraftigt i forskning om djupinlärning, där ablationsstudier ofta genomförs för att validera neurala arkitekturer som forskare framtagit. Så vitt vi vet är Maggy det första open-source ramverk för asynkrona parallella ablationsstudier och hyperparameteroptimering för TensorFlow. I detta arbete har vi lagt till viktiga funktioner såsom möjligheten att utföra ablationsstudier på PyTorch-modeller samt generalisering av funktionsablation för alla datatyper. Detta arbete upplyser också dem viktigaste utmaningarna och mest intressanta punkterna för att utveckla en ram ovanpå PyTorch och hur dessa utmaningar har hanterats i förlängningen av Maggy.
14

Simulace projevu kožního onemocnění s využitím GAN / Simulation of Skin Diseases Effect Using GAN

Bak, Adam January 2021 (has links)
Cieľom tejto diplomovej práce je vygenerovanie datasetu syntetických snímkov odtlačkov prstov, ktoré vykazujú známky kožných ochorení. Práca sa zaoberá poškodením spôsobeným kožnými ochoreniami v odtlačkoch prstov a generovaním syntetických odtlačkov prstov. Odtlačky prstov s prejavom kožných ochorení boli generované s využitím modelu založeného na Wasserstein GAN s penalizáciou gradientu. Na trénovanie GAN modelu bola použitá unikátna databáza odtlačkov prstov s prejavom kožných ochorení vytvorená na FIT VUT. Daný model bol trénovaný na troch typoch kožných ochorení: atopický ekzém, psoriáza a dyshidrotický ekzém. Sieť generátoru z natrénovaného WGAN-GP modelu bola použitá na vygenerovanie datasetov syntetických odtlačkov prstov. Tieto syntetické odtlačky boli porovnané s reálnymi odtlačkami s využitím NFIQ a FiQiVi nástrojov na určenie kvality spoločne s porovnaním rozložení lokácií a orientácii markantov v snímkoch odtlačkov prstov.
15

Translating LaTeX to Coq: A Recurrent Neural Network Approach to Formalizing Natural Language Proofs

Carman, Benjamin Andrew 18 May 2021 (has links)
No description available.
16

Nízko-dimenzionální faktorizace pro "End-To-End" řečové systémy / Low-Dimensional Matrix Factorization in End-To-End Speech Recognition Systems

Gajdár, Matúš January 2020 (has links)
The project covers automatic speech recognition with neural network training using low-dimensional matrix factorization. We are describing time delay neural networks with factorization (TDNN-F) and without it (TDNN) in Pytorch language. We are comparing the implementation between Pytorch and Kaldi toolkit, where we achieve similar results during experiments with various network architectures. The last chapter describes the impact of a low-dimensional matrix factorization on End-to-End speech recognition systems and also a modification of the system with TDNN(-F) networks. Using specific network settings, we were able to achieve better results with systems using factorization. Additionally, we reduced the complexity of training by decreasing network parameters with the use of TDNN(-F) networks.
17

Identifying signatures in scanned paperdocuments : A proof-of-concept at Bolagsverket

Norén, Björn January 2022 (has links)
Bolagsverket, a Swedish government agency receives cases both in paper form via mail, document form via e-mail and also digital forms. These cases may be about registering people in a company, changing the share capital, etc. However, handling and confirming all these papers can be time consuming, and it would be beneficial for Bolagsverket if this process could be automated with as little human input as possible. This thesis investigates if it is possible to identify whether a paper contains a signature or not by using artificial intelligence (AI) and convolutional neural networks (CNN), and also if it is possible to determine how many signatures a given paper has. If these problems prove to be solvable, it could potentially lead to a great benefit for Bolagsverket. In this paper, a residual neural network (ResNet) was implemented which later was trained on sample data provided by Bolagsverket. The results demonstrate that it is possible to determine whether a paper has a signature or not with a 99% accuracy, which was tested on 1000 images where the model was trained on 8787 images. A second ResNet architecture was implemented to identify the number of signatures, and the result shows that this was possible with an accuracy score of 94.6%.
18

Experiments of Federated Learning on Raspberry Pi Boards

Sondén, Simon, Madadzade, Farhad January 2022 (has links)
In recent years, companies of all sizes have become increasingly dependent on customer user data and processing it using machine learning (ML) methods. These methods do, however, require the raw user data to be stored locally on a server or cloud service, raising privacy concerns. Hence, the purpose of this paper is to analyze a new alternative ML method, called federated learning (FL). FL allows the data to remain on each respective device while still being able to create a global model by averaging local models on each client device. The analysis in this report is based on two different types of simulations. The first is simulations in a virtual environment where a larger number of devices can be included, while the second is simulations on a physical testbed of Raspberry Pi (RPI) single-board computers. Different parameters are changed and altered to find the optimal performance, accuracy, and loss of computations in each case. The results of all simulations show that fewer clients and more training epochs increase the accuracy when using independent and identically distributed (IID) data. However, when using non-IID data, the accuracy is not dependent on the number of epochs, and it becomes chaotic when decreasing the number of clients which are sampled each round. Furthermore, the tests on the RPIs show results which agree with the virtual simulation. / På den senaste tiden har företag blivit allt mer beroende av ku rs användardata och har börjat använda maskininlärningsmodeller för att processera datan. För att skapa dessa modeller behövs att användardata lagras lokalt på en server eller en molntjänst, vilket kan leda till integritetsproblematik. Syftet med denna rapport är därför att analysera en ny alternativ metod, vid namn ”federated learning” (FL). Denna metod möjliggör skapandet av en global modell samtidigt som användardata förblir kvar på varje klients enhet. Detta görs genom att den globala modellen bestäms genom att beräkna medelvärdet av samtliga enheters lokala modeller. Analysen av metoden görs baserat på två olika typer av simuleringar. Den första görs i en virtuell miljö för att kunna inkluderastörre mängder klientenheter medan den andra typen görs på en fysisk testbädd som består av enkortsdatorerna Raspberry Pi (RPI). Olika parametrar justeras och ändras för att finna modellens optimala prestanda och nogrannhet. Resultaten av simuleringarna visar att färre klienter och flera träningsepoker ökar noggrannheten när oberoende och likafördelad (på engelska förkortat till IID) data används. Däremot påvisas att noggrannheten inte är beroende av antalet epoker när icke-IID data nyttjas. Noggrannheten blir däremot kaotisk när antalet klienter som används för att träna på varje runda minskas. Utöver observeras det även att testresultaten från RPI enheterna stämmer överens med resultatet från simuleringarna. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
19

Segmentace buněk pomocí konvolučních neuronových sítí / Cell segmentation using convolutional neural networks

Hrdličková, Alžběta January 2021 (has links)
This work examines the use of convolutional neural networks with a focus on semantic and instance segmentation of cells from microscopic images. The theoretical part contains a description of deep neural networks and a summary of widely used convolutional architectures for image segmentation. The practical part of the work is devoted to the creation of a convolutional neural network model based on the U-Net architecture. It also contains cell segmentation of predicted images using three methods, namely thresholding, the watershed and the random walker.
20

Pořízení a zpracování sbírky registračních značek vozidel / Obtaining and Processing of a Set of Vehicle License Plates

Kvapilová, Aneta January 2019 (has links)
This master thesis focuses on creating and processing a dataset, which contains semi-automatically processed images of vehicles licence plates. The main goal is to create videos and a set of tools, which are able to transform  input videos into a dataset used for traffic monitoring neural networks. Used programming language is Python, graphical library OpenCV and framework PyTorch for implementation of neural network.

Page generated in 0.0395 seconds