1 |
Beam-Steerable and Reconfigurable Reflectarray Antennas for High Gain Space ApplicationsKarnati, Kalyan 01 January 2015 (has links)
Reflectarray antennas uniquely combine the advantages of parabolic reflectors and phased array antennas. Comprised of planar structures similar to phased arrays and utilizing quasi-optical excitation similar to parabolic reflectors, reflectarray antennas provide beam steering without the need of complex and lossy feed networks. Chapter 1 discusses the basic theory of reflectarray and its design. A brief summary of previous work and current research status is also presented. The inherent advantages and drawbacks of the reflectarray are discussed. In chapter 2, a novel theoretical approach to extract the reflection coefficient of reflectarray unit cells is developed. The approach is applied to single-resonance unit cell elements under normal and waveguide incidences. The developed theory is also utilized to understand the difference between the TEM and TE10 mode of excitation. Using this theory, effects of different physical parameters on reflection properties of unit cells are studied without the need of full-wave simulations. Detailed analysis is performed for Ka-band reflectarray unit cells and verified by full-wave simulations. In addition, an approach to extract the Q factors using full-wave simulations is also presented. Lastly, a detailed study on the effects of inter-element spacing is discussed. Q factor theory discussed in chapter 2 is extended to account for the varying incidence angles and polarizations in chapter 3 utilizing Floquet modes. Emphasis is laid on elements located on planes where extremities in performance tend to occur. The antenna element properties are assessed in terms of maximum reflection loss and slope of the reflection phase. A thorough analysis is performed at Ka band and the results obtained are verified using full-wave simulations. Reflection coefficients over a 749-element reflectarray aperture for a broadside radiation pattern are presented for a couple of cases and the effects of coupling conditions in conjunction with incidence angles are demonstrated. The presented theory provides explicit physical intuition and guidelines for efficient and accurate reflectarray design. In chapter 4, tunable reflectarray elements capacitively loaded with Barium Strontium Titanate (BST) thin film are shown. The effects of substrate thickness, operating frequency and deposition pressure are shown utilizing coupling conditions and the performance is optimized. To ensure minimum affects from biasing, optimized biasing schemes are discussed. The proposed unit cells are fabricated and measured, demonstrating the reconfigurability by varying the applied E-field. To demonstrate the concept, a 45 element array is also designed and fabricated. Using anechoic chamber measurements, far-field patterns are obtained and a beam scan up to 25o is shown on the E-plane. Overall, novel theoretical approaches to analyze the reflection properties of the reflectarray elements using Q factors are developed. The proposed theoretical models provide valuable physical insight utilizing coupling conditions and aid in efficient reflectarray design. In addition, for the first time a continuously tunable reflectarray operating at Ka-band is presented using BST technology. Due to monolithic integration, the technique can be extended to higher frequencies such as V-band and above.
|
2 |
Interpolation-based modelling of microwave ring resonatorsSchoeman, Marlize 12 1900 (has links)
Thesis (PhD (Electical and Electronic Engineering))--University of Stellenbosch, 2006. / Resonant frequencies and Q-factors of microwave ring resonators are predicted using interpolation-
based modelling.
A robust and efficient multivariate adaptive rational-multinomial combination interpolant is
presented. The algorithm models multiple resonance frequencies of a microwave ring resonator
simultaneously by solving an eigenmode problem. To ensure a feasible solution when using the
Method of Moments, a frequency dependent scaling constant is applied to the output model.
This, however, also induces a discontinuous solution space across the specific geometry and
requires that the frequency dependence be addressed separately from other physical parameters.
One-dimensional adaptive rational Vector Fitting is used to identify and classify resonance
frequencies into modes. The geometrical parameter space then models the different mode frequencies
using multivariate adaptive multinomial interpolation.
The technique is illustrated and evaluated on both two- and three-dimensional input models.
Statistical analysis results suggest that models are of a high accuracy even when some resonance
frequencies are lost during the frequency identification procedure.
A three-point rational interpolant function in the region of resonance is presented for the calculation
of loaded quality factors. The technique utilises the already known interpolant coefficients
of a Thiele-type continued fraction interpolant, modelling the S-parameter response of a resonator.
By using only three of the interpolant coefficients at a time, the technique provides a direct
fit and solution to the Q-factors without any additional computational electromagnetic effort.
The modelling algorithm is tested and verified for both high- and low-Q resonators. The model
is experimentally verified and comparative results to measurement predictions are shown. A
disadvantage of the method is that the technique cannot be applied to noisy measurement data
and that results become unreliable under low coupling conditions.
|
3 |
Investigating and Enhancing Performance of Multiple Antenna Systems in Compact MIMO/Diversity TerminalsZhang, Shuai January 2013 (has links)
Today, owners of small communicating device are interested in transmitting or receiving various multimedia data. By increasing the number of antennas at the transmitter and/or the receiver side of the wireless link, the diversity/Multiple-Input Multiple-Output (MIMO) techniques can increase wireless channel capacity without the need for additional power or spectrum in rich scattering environments. However, due to the limited space of small mobile devices, the correlation coefficients between MIMO antenna elements are very high and the total efficiencies of MIMO elements degrade severely. Furthermore, the human body causes high losses on electromagnetic wave. During the applications, the presence of users may result in the significant reduction of the antenna total efficiencies and highly affects the correlations of MIMO antenna systems. The aims of this thesis are to investigate and enhance the MIMO/diversity performance of multiple antenna systems in the free space and the presence of users. The background and theory of multiple antenna systems are introduced briefly first. Several figures of merits are provided and discussed to evaluate the multiple antenna systems. The decoupling techniques are investigated in the multiple antenna systems operating at the higher frequencies (above 1.7 GHz) and with high radiation efficiency. The single, dual and wide band isolation enhancements are realized through the half-wavelength decoupling slot, quarter-wavelength decoupling slot with T-shaped impedance transformer, tree-like parasitic element with multiple resonances, as well as the different polarizations and radiation patterns of multiple antennas. In the lower bands (lower than 960 MHz), due to the low radiation efficiency and strong chassis mode, the work mainly focused on how to directly reduce the correlations and enlarge the total efficiency. A new mode of mutual scattering mode is introduced. By increasing the Q factors, the radiation patterns of multiple antennas are separated automatically to reduce the correlations. With the inter-element distance larger than a certain distance, a higher Q factor also improved the total efficiency apart from the low correlation. A wideband LTE MIMO antenna with multiple resonances is proposed in mobile terminals. The high Q factors required for the low correlation and high efficiencies in mutual scattering mode is reduced with another mode of diagonal antenna-chassis mode. Hence, the bandwidth of wideband LTE MIMO antenna with multiple resonances mentioned above can be further enlarged while maintaining the good MIMO/diversity performance. The user effects are studied in different MIMO antenna types, chassis lengths, frequencies, port phases and operating modes. Utilizing these usefully information, an adaptive quad-element MAS has been proposed to reduce the user effects and the some geranial rules not limited to the designed MAS have also been given. / <p>QC 20130121</p> / EU Erasmus Mundus External Cooperation Window TANDEM
|
Page generated in 0.0474 seconds