• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating Patterns of Mitochondrial DNA Inheritance Using New Zealand Chinook Salmon (Oncorhynchus tshawytscha) as a Model Organism

Wolff, Jonci Nikolai January 2008 (has links)
The laws for the inheritance of animal mitochondrial DNA differ from those revealed for nuclear DNA. In contrast to nuclear genes, animal mitochondrial DNA (mtDNA) is predominantly inherited through the maternal line and is typically assumed to be nonrecombining. The absence of both paternal transmission (hereafter: paternal leakage) and heterologous recombination of mtDNA are assumed to be key characteristics of mitochondrial DNA inheritance, which has enabled evolutionary models to be much simpler than those needed for the interpretation of nuclear DNA. However, recent revelations of paternal leakage in the animal kingdom challenge our current knowledge about mtDNA inheritance and the utility of mtDNA as a molecular marker. The occurrence of paternal leakage potentially introduces new haplotypes into populations and therefore impacts on the interpretation of mtDNA analysis. To date, it is unclear whether the documented cases of paternal leakage are exceptions to the general rule or if these events occur more frequently than so far believed. If this event occurred at a measurable frequency, it is vital to implement such data into models of mtDNA evolution to improve the accuracy at which evolutionary relationships and times of divergence are estimated. In this thesis, I aimed to provide an insight into the broader patterns of mtDNA inheritance using chinook salmon as a model organism. I first sought to delimit the frequency of paternal leakage in chinook salmon and further investigated two major mechanisms which are believed to limit paternal leakage: The many-fold dilution of paternal mtDNA by maternal mtDNA upon fertilization and the genetic bottleneck mtDNA is believed to be exposed to during early developmental stages. A screen of roughly 10.000 offspring did not reveal the presence of paternal mtDNA within these samples delimiting the maximum frequency of paternal leakage in this system to 0.18% (power of 0.95) and 0.27% (power of 0.99), suggesting that the occurrence of paternal leakage is most likely an exception to the general rule. To infer the dilution of paternal mtDNA upon fertilization, I employed real-time PCR and determined the mtDNA content of salmon spermatozoa and oocytes to be 5.73 ± 2.28 and 3.15x109 ± 9.98x108 molecules per gamete, respectively. Accordingly, the estimated ratio of paternal to maternal mtDNA in zygotes is 1:7.35x108 ± 4.67x108. This estimate is 3 to 5 orders of magnitude smaller than the ratio revealed for mammals. Consequently, and if the dilution acts as an efficient barrier against the transmission of paternal mtDNA, paternal inheritance of mtDNA per offspring will be much less likely in this system than in mammals. To estimate at what probability the diminutive contribution of paternal mtDNA in zygotes is potentially inherited to offspring, I determined the size of the bottleneck acting on mtDNA during both embryogenesis and oogensis by examining the transmission of mtDNA variants to offspring and oocytes within a pedigree of heteroplasmic individuals. The number of segregating units (mtDNAs) between a mother’s somatic tissue and oocytes was estimated to be 109.3 (median = 109.3; 62.4 < NeOog < 189.6; 95% confidence interval) and from a mother’s soma to offspring’s soma 105.4 (median = 105.4; 70.3 < NeEmb < 153.1; 95% confidence interval). Detected variances in allele frequency among oocytes were not significantly different from those in offspring, strongly suggesting that segregation of mtDNA occurs during oogenesis with its completion before oocyte maturation. However, considering a ratio of roughly 1:7.35x108 for paternal to maternal mtDNA in zygotes and that approximately 109.3 (NeOog) of the mitochondrial genomes present in zygotes are ultimately inherited to offspring, the probability for paternal mtDNA to be transmitted to offspring is in round terms 1.0x10-11/paternal mtDNA molecule. In summary, the results presented in this thesis document the presence of efficient barriers to prohibit the inheritance of minor allele contributions, such as paternal mtDNA, to offspring. These results strongly suggest that paternal leakage is an exception to the general rule. Furthermore, in comparison to studies undertaken in mammals, my results indicate that mechanisms in place to prevent paternal leakage may be unequally efficient among different animal taxa, reflecting differences in life traits, such as gamete morphology, gamete investment and reproductive strategies. Nonetheless, by the means of the dilution effect in zygotes and the genetic bottleneck during oogenesis, the occurrence of paternal leakage might be simply a quantitative phenomenon and cannot be excluded per se. The increasing number of documented cases of paternal leakage clarifies that its occurrence must be considered when applying mtDNA as a genetic marker. Furthermore, for species in which mtDNA inheritance can be confirmed to be purely random, theoretical frequencies of paternal leakage can be inferred and potentially implemented into models of mtDNA evolution.
2

Investigating Patterns of Mitochondrial DNA Inheritance Using New Zealand Chinook Salmon (Oncorhynchus tshawytscha) as a Model Organism

Wolff, Jonci Nikolai January 2008 (has links)
The laws for the inheritance of animal mitochondrial DNA differ from those revealed for nuclear DNA. In contrast to nuclear genes, animal mitochondrial DNA (mtDNA) is predominantly inherited through the maternal line and is typically assumed to be nonrecombining. The absence of both paternal transmission (hereafter: paternal leakage) and heterologous recombination of mtDNA are assumed to be key characteristics of mitochondrial DNA inheritance, which has enabled evolutionary models to be much simpler than those needed for the interpretation of nuclear DNA. However, recent revelations of paternal leakage in the animal kingdom challenge our current knowledge about mtDNA inheritance and the utility of mtDNA as a molecular marker. The occurrence of paternal leakage potentially introduces new haplotypes into populations and therefore impacts on the interpretation of mtDNA analysis. To date, it is unclear whether the documented cases of paternal leakage are exceptions to the general rule or if these events occur more frequently than so far believed. If this event occurred at a measurable frequency, it is vital to implement such data into models of mtDNA evolution to improve the accuracy at which evolutionary relationships and times of divergence are estimated. In this thesis, I aimed to provide an insight into the broader patterns of mtDNA inheritance using chinook salmon as a model organism. I first sought to delimit the frequency of paternal leakage in chinook salmon and further investigated two major mechanisms which are believed to limit paternal leakage: The many-fold dilution of paternal mtDNA by maternal mtDNA upon fertilization and the genetic bottleneck mtDNA is believed to be exposed to during early developmental stages. A screen of roughly 10.000 offspring did not reveal the presence of paternal mtDNA within these samples delimiting the maximum frequency of paternal leakage in this system to 0.18% (power of 0.95) and 0.27% (power of 0.99), suggesting that the occurrence of paternal leakage is most likely an exception to the general rule. To infer the dilution of paternal mtDNA upon fertilization, I employed real-time PCR and determined the mtDNA content of salmon spermatozoa and oocytes to be 5.73 ± 2.28 and 3.15x109 ± 9.98x108 molecules per gamete, respectively. Accordingly, the estimated ratio of paternal to maternal mtDNA in zygotes is 1:7.35x108 ± 4.67x108. This estimate is 3 to 5 orders of magnitude smaller than the ratio revealed for mammals. Consequently, and if the dilution acts as an efficient barrier against the transmission of paternal mtDNA, paternal inheritance of mtDNA per offspring will be much less likely in this system than in mammals. To estimate at what probability the diminutive contribution of paternal mtDNA in zygotes is potentially inherited to offspring, I determined the size of the bottleneck acting on mtDNA during both embryogenesis and oogensis by examining the transmission of mtDNA variants to offspring and oocytes within a pedigree of heteroplasmic individuals. The number of segregating units (mtDNAs) between a mother’s somatic tissue and oocytes was estimated to be 109.3 (median = 109.3; 62.4 < NeOog < 189.6; 95% confidence interval) and from a mother’s soma to offspring’s soma 105.4 (median = 105.4; 70.3 < NeEmb < 153.1; 95% confidence interval). Detected variances in allele frequency among oocytes were not significantly different from those in offspring, strongly suggesting that segregation of mtDNA occurs during oogenesis with its completion before oocyte maturation. However, considering a ratio of roughly 1:7.35x108 for paternal to maternal mtDNA in zygotes and that approximately 109.3 (NeOog) of the mitochondrial genomes present in zygotes are ultimately inherited to offspring, the probability for paternal mtDNA to be transmitted to offspring is in round terms 1.0x10-11/paternal mtDNA molecule. In summary, the results presented in this thesis document the presence of efficient barriers to prohibit the inheritance of minor allele contributions, such as paternal mtDNA, to offspring. These results strongly suggest that paternal leakage is an exception to the general rule. Furthermore, in comparison to studies undertaken in mammals, my results indicate that mechanisms in place to prevent paternal leakage may be unequally efficient among different animal taxa, reflecting differences in life traits, such as gamete morphology, gamete investment and reproductive strategies. Nonetheless, by the means of the dilution effect in zygotes and the genetic bottleneck during oogenesis, the occurrence of paternal leakage might be simply a quantitative phenomenon and cannot be excluded per se. The increasing number of documented cases of paternal leakage clarifies that its occurrence must be considered when applying mtDNA as a genetic marker. Furthermore, for species in which mtDNA inheritance can be confirmed to be purely random, theoretical frequencies of paternal leakage can be inferred and potentially implemented into models of mtDNA evolution.
3

The Effects of Amixicile on Sub-gingival Biofilm Cultured from Humans

Azarnoush, Kian 01 January 2018 (has links)
Periodontitis is an inflammatory disease of the oral cavity induced by anaerobic bacteria, that remains to be the primary cause of tooth loss in adults worldwide. Finding an anti-microbial therapeutic to selectively target periodontal pathogens has proven to be difficult, and current treatment modalities only provide a transient benefit. Amixicile is a non-toxic, readily bioavailable novel antimicrobial that targets strict anaerobes through inhibition of the activity of Pyruvate Ferredoxin Oxidoreductase (PFOR), a major enzyme mediating oxidative decarboxylation of pyruvate, a critical step in metabolism. Our study aimed to evaluate the efficacy of amixicile in inhibiting the growth of bacteria harvested from the complex sub-gingival biofilm of patients with chronic periodontitis. We hypothesize that amixicile will selectively inhibit pathogenic anaerobic bacteria collected from patients, with the same efficacy as metronidazole, the current accepted treatment modality. Plaque samples were harvested from patients with severe chronic periodontitis and cultured under anaerobic conditions. The microbiomes were grown in the presence of amixicile and metronidazole and the growth was compared to that of bacteria grown in the absence of the antimicrobials. Following 24 hour incubation, bacterial DNA was isolated and bacterial quantity was evaluated by quantitative PCR (qPCR) using primers specific for 12 bacterial species: P. gingivalis (Pg), P. intermedia (Pi), F.nucleatum (Fn), S.gordonii (Sg), S. anginosus (Sa), V. atypical (Va), L. acidophilus (La), A.actinomycetemcomitans (Aa), T.denticola (Td), S.mutans (Sm), S.sanguis (Ss), and 16s. Individual qPCR runs were combined to represent an overall average of CT value differences. Amixicile treatment groups exhibited statistical significant reductions (PP. intermedia, F. nucleatum and Veillonella atypical. When comparing amixicile to metronidazole, amixicile performed with similar efficacy with the largest effect seen for PFOR bacteria. Our conclusion supports amixicile as a potent inhibitor of anaerobic bacteria, and could be a potential new therapeutic antimicrobial in the treatment of periodontal disease
4

Mikrobiologisk diagnostik vid misstänkt implantatrelaterade infektioner / Microbiological Diagnosis of suspected Implant-related Infections

Mohammed, Hamse Ali January 2012 (has links)
No description available.
5

Microwave-based Pretreatment, Pathogen Fate and Microbial Population in a Dairy Manure Treatment System

Jin, Ying 12 January 2011 (has links)
Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while one of the limitations to struvite precipitation is the availability of orthophosphate. The aim of this work was to study the use of microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H₂SO₄, or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and side reactions. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium reacts with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147°C and 25.3 min for methane production, and 135°C and 26 min for orthophosphate release, respectively. Applying manure or slurry directly to the land can contribute to pathogen contamination of land, freshwater and groundwater. Thus it is important to study the fate of pathogens in diary manure anaerobic digestion systems. The goal of the project was to establish a molecular based quantitative method for pathogen identification and quantification, compare the molecular based method with culture based method and study pathogen fate in dairy manure and different anaerobic digesters. Result showed that molecular based method detected more E.coli than the culture based method with less variability. Thermophilic anaerobic digestion can achieve more than 95% pathogen removal rate while mesophilic anaerobic digester had increased E.coli number than fresh manure, indicating temperature is a key factor for pathogen removal. In general, the overall goal of the study is to develop an integrated dairy manure treatment system. The microwave based pretreatment enhanced the subsequent biogas production and struvite precipitation, and the molecular tool based method provided a more precise and faster way to study the pathogen fate in various anaerobic digestions. / Ph. D.
6

Etude de la structure et de l'origine des ADN circulants : application à la mise au point d'un test de détection des mutations KRAS et BRAF dans le cancer colorectal / Study of the form and the origin of the circulating DNA. : application to the conception of a diagnosis assay of the KRAS gene mutation by blood sampling in theragnostic objective.

Moulière, Florent 21 November 2012 (has links)
Les ADN circulants extracellulaires (ADNcf) sont considérés comme des biomarqueurs potentiels non invasifs de la progression tumorale. Ils présentent l'avantage d'être porteurs des altérations génétiques des tumeurs dont ils sont issus. Les connaissances sur les formes, les mécanismes de libération et les actions biologiques des ADNcf sont cependant encore peu caractérisées.Nous avons émis l'hypothèse que se focaliser sur l'étude de la structure et des origines des ADNcf issus des tumeurs permettrait d'ouvrir de nouvelles perspectives d'applications en génomique personnalisée.Nos travaux ont démontré à l'aide d'un animal modèle que les ADNcf issus des tumeurs de cancers colorectaux sont hautement fragmentés à des tailles inférieures à 145 bp. Cette observation a été confirmée sur plasma humain en réalisant par AFM la première image directe d'ADNcf issu de tumeurs. Nous avons déterminé que les proportions d'ADNcf mutés varient fortement dans la circulation sanguine, mais que près d'un tiers des individus présentaient des proportions d'ADNcf mutés supérieures à 25 % de tous les ADNcf retrouvés dans le sang. Ces découvertes nous ont permis de participer au développement d'une méthode d'analyse spécifique des ADNcf du plasma permettant de déterminer par Q-PCR la concentration en ADNcf, sa fragmentation ainsi que la présence des mutations KRAS et BRAF. Cette méthode a été validée cliniquement sur 79 échantillons de patients atteints de cancer colorectal métastatique en la comparant avec une concordance de 96 % à la technique de référence clinique utilisant l'ADN de tissu tumoral. L'utilisation des ADNcf en tant que « biopsie liquide » devrait être un biomarqueur central dans l'approche de génomique personnalisée des années à venir et les résultats de ces travaux de thèse participer au développement de cette nouvelle approche. / Cell-free circulating DNA (cfDNA) are considered as potentials non invasive biomarkers of tumor progression. They present the advantage to exhibit the genetic alterations from their tumor of origin. Knowledge on the forms, mechanism of release, and biological effect of cfDNA are however still less characterized. We have hypothesized that focalizing on the study of cfDNA structure and origin will open new perspectives of application in personalized genomic. Our works demonstrated, with an animal model, that cfDNA from colorectal cancer tumor are highly fragmented at size lower than 145 bp. This observation was confirmed on human plasma with AFM by realizing the first direct picture of tumor-derived cfDNA. We have determined that cfDNA proportion highly varied in bloodstream, but more than a third of individual exhibit proportions larger than 25 % of blood total cfDNA.These discoveries let us participate to the development of a specific analysis method of plasma cfDNA owing to determinate by Q-PCR the cfDNA concentration, its fragmentation and the presence of KRAS and BRAF mutation. This method has been clinically validated on 79 samples of metastatic colorectal cancer patients by comparing it, with a concordance of 96 %, with the technique of reference using DNA from tumoral tissue.cfDNA could be used as « liquid biospy » and could be a central biomarker in the personalized genomic for the future years, and this thesis work participate to the development of this new approach.
7

Análise integrada de métodos moleculares e sorológicos para diagnóstico de hanseníase e monitoramento de contatos domiciliares

Gama, Rafael Silva 30 October 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-04-10T18:04:35Z No. of bitstreams: 1 rafaelsilvagama.pdf: 1774054 bytes, checksum: b50899947c904ace42800056fa0d9afc (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-04-11T15:19:43Z (GMT) No. of bitstreams: 1 rafaelsilvagama.pdf: 1774054 bytes, checksum: b50899947c904ace42800056fa0d9afc (MD5) / Made available in DSpace on 2018-04-11T15:19:43Z (GMT). No. of bitstreams: 1 rafaelsilvagama.pdf: 1774054 bytes, checksum: b50899947c904ace42800056fa0d9afc (MD5) Previous issue date: 2017-10-30 / O diagnóstico da hanseníase é eminentemente clínico, podendo ser complementado com baciloscopia, histopatologia e testes imunológicos. Métodos bacteriológicos clássicos para identificação de bactérias patogênicas não podem ser aplicados para o diagnóstico de hanseníase, sobretudo pela impossibilidade de cultivo in vitro do M. leprae. O exame histopatológico e a baciloscopia têm sido utilizados como métodos auxiliares para a classificação clínica dos casos. Técnicas moleculares e sorológicas têm sido avaliadas como ferramentas de diagnóstico na hanseníase. Ao contrário da baciloscopia, que requer cerca de 104 organismos por grama de tecido para detecção real, a PCR é uma técnica de alta especificidade e sensibilidade, capaz de detectar 25 fg (10-15g) de DNA de M. leprae. Além disso, a possibilidade de sua utilização em quase todos os tipos de amostras clínicas confere a este método um alto potencial para o diagnóstico diferencial. Os testes sorológicos têm como alvo a detecção de anticorpos específicos contra o M. leprae que indicam infecção. Esses testes podem ser úteis no monitoramento da eficácia da terapia, na determinação da prevalência da doença e na avaliação da distribuição da infecção entre contatos domiciliares. Considera-se que o indivíduo que reside ou tenha residido com o doente de hanseníase apresenta maior risco de adoecimento em relação à população em geral, pelo fato de estarem expostos ao M. leprae. Familiares de pacientes Multibacilar e Paucibacilar devem ser examinados, independente do tempo de convívio. Sugere-se avaliar anualmente, durante cinco anos, todos os contatos não doentes, quer sejam familiares ou sociais. Neste estudo utilizou-se o suporte da Inteligência Artificial (Random Forest) para análise integrada de métodos sorológicos e moleculares, no diagnóstico de novos casos de hanseníase e monitoramento de contatos domiciliares por um período de cinco anos. O estudo foi desenvolvido em Governador Valadares – MG, considerada área endêmica de hanseníase. O desenho proposto é do tipo longitudinal, com coleta de dados cadastrais de todos os casos diagnosticados em 2011 e seus respectivos contatos domiciliares registrados no período de 2011, 2012 e 2016. Um total de 196 indivíduos, sendo 43 casos, 113 contatos domiciliares e 40 indivíduos considerados controles endêmicos que relataram não ter convívio com pacientes com hanseníase nem tão pouco histórico de hanseníase na família foi incluído no estudo. Foram coletadas amostras sangue e de raspado intradérmico dos casos de hanseníase e seus respectivos contatos domiciliares, para análise por qPCR (16S rRNA) e ELISA (anti NO-OLID e LID-1). A análise integrada dos dados foi realizada por meio da Random Forest com o objetivo de melhorar o desempenho dos testes para o diagnóstico de hanseníase. Isoladamente, a qPCR apresentou sensibilidade de 48,8% e especificidade de 100% no diagnóstico de casos de hanseníase. No ensaio de ELISA anti-ND-O-LID a sensibilidade alcançada foi de 57,9% e especificidade de 97,5%, enquanto que no ensaio de anti-LID-1, a sensibilidade e especificidade foram de 63,2% e 92,5%, respectivamente. Entretanto, a análise integrada dos dados por Random Forest, utilizando 10.000 árvores de decisão, com um erro modal de 12,8%, obteve-se uma taxa de sensibilidade de 81,6% e especificidade de 92,5% na predição de novos casos de hanseníase. O modelo de Random Forest foi utilizado para o monitoramento de contatos domiciliares no período de 05 anos. Esta ferramenta de análise identificou entre os contatos, 02 doentes, mesmo antes do diagnóstico clínico. Ao final do período de acompanhamento, 03 contatos domiciliares foram notificados como casos novos de hanseníase. Desta forma, o modelo proposto pela análise Random Forest permitiu diagnosticar casos de hanseníase com alta sensibilidade e especificidade e identificar precocemente novos casos entre os contatos domiciliares durante o monitoramento. / The diagnosis of leprosy is eminently clinical and may be supplemented with bacilloscopy, histopathology and immunological tests. Classical bacteriological methods for the identification of pathogenic bacteria can not be applied for the diagnosis of leprosy, mainly due to the impossibility of in vitro culture of M. leprae. Histopathological examination and smear microscopy have been used as auxiliary methods for the clinical classification of cases. Molecular and serological techniques have been evaluated as diagnostic tools in leprosy. Unlike smear microscopy, which requires about 104 organisms per gram of tissue for actual detection, PCR is a technique of high specificity and sensitivity, capable of detecting 25 fg (10-15g) of M. leprae DNA. In addition, a possibility of its use in almost all types of clinical specimens gives this method a high potential for differential diagnosis. Serological tests are aimed at detecting specific antibodies against M. leprae that indicate infection. These tests may be useful in monitoring therapy efficacy, in determining disease prevalence, and in assessing the distribution of infection between household contacts. It is considered that the individual who resides or has lived with the leprosy patient has a higher risk of becoming ill in relation to the general population due to the fact that they are exposed to M. leprae. Relatives of patients Multibacillary and Paucibacillary should be examined, regardless of the time of conviviality. It is suggested to evaluate annually, for five years, all non-sick contacts, whether family or social. In this study we used the support of Artificial Intelligence (Random Forest) for integrated analysis of serological and molecular methods, in the diagnosis of new cases of leprosy and monitoring of household contacts for a period of five years. The study was developed in Governador Valadares - MG, considered an endemic area of leprosy. The proposed design is of the longitudinal type, with the collection of cadastral data of all cases diagnosed in 2011 and their respective household contacts registered in the period of 2011, 2012 and 2016. A total of 196 subjects, including 43 cases, 113 household contacts and 40 individuals considered endemic controls who reported not having lived with patients with leprosy or a history of leprosy in the family were included in the study. Blood samples and intradermal scrapings were collected from leprosy cases and their respective household contacts for analysis by qPCR (16S rRNA) and ELISA (anti-ND-O-LID and LID-1). The integrated analysis of the data was performed through Random Forest with the objective of improving the performance of the tests for leprosy diagnosis. In isolation, the qPCR showed sensitivity of 48.8% and specificity of 100% in the diagnosis of leprosy cases. In the anti-NDO- LID ELISA the sensitivity reached was 57.9% and specificity was 97.5%, whereas in the anti-LID-1 assay the sensitivity and specificity were 63.2% and 92.5%, respectively. However, the integrated analysis of the data by Random forest, using 10,000 decision trees, with a modal error of 12.8%, obtained a sensitivity rate of 81.6% and specificity of 92.5% in the prediction of new cases of leprosy. The Random Forest model was used to monitor household contacts within a period of 5 years. This analysis tool identified between the contacts, 02 patients, even before the clinical diagnosis. At the end of the follow-up period, 03 household contacts were reported as new cases of leprosy. Thus, the model proposed by the Random Forest analysis allowed the diagnosis of leprosy cases with high sensitivity and specificity and early identification of new cases among household contacts during monitoring.
8

Amixicile Inhibits Anaerobic Bacteria within an Oral Microbiome Derived from Patients with Chronic Periodontitis

Ramsey, Kane 01 January 2017 (has links)
Periodontitis is a chronic inflammatory disease caused by pathogenic bacteria residing in a complex biofilm within a susceptible host. Amixicile is a non-toxic, readily bioavailable novel antimicrobial that targets strict anaerobes through inhibition of the activity of Pyruvate Ferredoxin Oxidoreductase (PFOR), a major enzyme mediating oxidative decarboxylation of pyruvate. Our study aimed to evaluate the efficacy of amixicile, when compared to metronidazole, in inhibiting the growth of bacteria present in a microbiome harvested from patients with chronic periodontitis. Plaque samples were harvested from patients with severe chronic periodontitis and cultured under anaerobic conditions. The microbiomes were grown in the presence of amixicile and metronidazole and the growth was compared to that of bacteria grown in the absence of the antimicrobials. Following 24 hour growth the bacterial DNA was analyzed using quantitative PCR (qPCR) using primers specific for 12 bacterial species: P. gingivalis (Pg), P. intermedia (Pi), F.nucleatum (Fn), S.gordonii (Sg), S. anginosus (Sa), V. atypical (Va), L. acidophilus (La), A.actinomycetemcomitans (Aa), T.denticola (Td), S.mutans (Sm), and S.sanguis (Ss). Both drug treatment groups yielded a statistical significant reduction for several anaerobic bacteria: Pi (P
9

Analysis of gene- and protein expression in an Alzheimer model of <em>Drosophila melanogaster</em>

Nilsson, Daniel January 2009 (has links)
<p>Alzheimer’s disease is a common and very costly disease in today’s society. The hallmarks of the disease are the formation of two proteinaggregates, amyloid plaques containing Aβ-peptides and neurofibrillary tangles containing hyperphosphorylated tau protein. The formation ofneurofibrillary tangles is thought to be promoted by amyloid formation and is why the cellular events surrounding the formation and interactionsof the Aβ-peptide is a prime target for Alzheimer’s research. In this thesis, the gene of the highly aggregation prone form of Aβ-peptide, the Aβ1-42, has been inserted in a Drosophila melanogaster to promote expression in the central nervous system through the use of the Gal4-UAS system.Gene expression analysis was done using a RNA purification kit, translating the RNA into cDNA using RT-PCR and the levels were analyzed usingquantitative real-time PCR. For protein expression analysis the immunological techniques of dot blot and western blot were used combined withan immunoprecipitation step using magnetic beads. A fibrillation experiment was also performed to look into the potential seeding effect onamyloid formation from the Aβ1-42 expressing Drosophila using fluorescence spectroscopy.The aim for this thesis was to look into expression of the Aβ1-42 gene and the impact of ageing on expression levels. Another aim was to try andseparate and detect soluble Aβ-peptide species from tissue homogenates of Drosophila.No amplification could be detected in the quantitative real-time PCR, most likely due to concentration issues of the reaction components. For thisreason gene expression could never be quantified nor could the effect of ageing and gene expression be looked into. Insoluble aggregates but nosoluble Aβ-peptide species could be detected or separated from the tissue of the Drosophila. No seeding effect on the amyloid formation could bestatistically determined by the fibrillation experiment, but interesting quenching effects on the total quantum yield of Aβ fibrils in the presence ofbrain homogenates were noted.</p>
10

Analysis of gene- and protein expression in an Alzheimer model of Drosophila melanogaster

Nilsson, Daniel January 2009 (has links)
Alzheimer’s disease is a common and very costly disease in today’s society. The hallmarks of the disease are the formation of two proteinaggregates, amyloid plaques containing Aβ-peptides and neurofibrillary tangles containing hyperphosphorylated tau protein. The formation ofneurofibrillary tangles is thought to be promoted by amyloid formation and is why the cellular events surrounding the formation and interactionsof the Aβ-peptide is a prime target for Alzheimer’s research. In this thesis, the gene of the highly aggregation prone form of Aβ-peptide, the Aβ1-42, has been inserted in a Drosophila melanogaster to promote expression in the central nervous system through the use of the Gal4-UAS system.Gene expression analysis was done using a RNA purification kit, translating the RNA into cDNA using RT-PCR and the levels were analyzed usingquantitative real-time PCR. For protein expression analysis the immunological techniques of dot blot and western blot were used combined withan immunoprecipitation step using magnetic beads. A fibrillation experiment was also performed to look into the potential seeding effect onamyloid formation from the Aβ1-42 expressing Drosophila using fluorescence spectroscopy.The aim for this thesis was to look into expression of the Aβ1-42 gene and the impact of ageing on expression levels. Another aim was to try andseparate and detect soluble Aβ-peptide species from tissue homogenates of Drosophila.No amplification could be detected in the quantitative real-time PCR, most likely due to concentration issues of the reaction components. For thisreason gene expression could never be quantified nor could the effect of ageing and gene expression be looked into. Insoluble aggregates but nosoluble Aβ-peptide species could be detected or separated from the tissue of the Drosophila. No seeding effect on the amyloid formation could bestatistically determined by the fibrillation experiment, but interesting quenching effects on the total quantum yield of Aβ fibrils in the presence ofbrain homogenates were noted.

Page generated in 0.438 seconds