1 |
Historical business cycles and market integrationUebele, Martin 23 February 2009 (has links)
Diese Dissertation befasst sich mit europäischer und US-amerikanischer Konjunkturgeschichte und Marktintegration im 19. und 20. Jahrhundert. Zur Analyse von konjunkturellen Schwankungen stellt sie der weitverbreiteten Historischen Volkswirtschaftlichen Gesamtrechnung (VGR) die Methode dynamischer Faktoranalyse zur Seite, die dazu beiträgt, die begrenzten historischen Zeitreihen effizient zu nutzen. Die nationale und internationale Entwicklung von Weizenmärkten seit dem Ende der Napoleonischen Kriege wird mit einem multivariaten dynamischen Faktormodell untersucht. Spektralanalyse wird zur Berechnung frequenzspezifischer Kohärenz von historischen Börsenindizes und konkurrierenden Schätzungen des Nationalprodukts in Deutschland zwischen 1850 und 1913 herangezogen. Ein wichtiges Ergebnis ist, dass Finanzdaten die Datierung der Konjunktur im Deutschen Kaiserreich erleichtern, was auch durch die Ergebnisse der Faktoranalyse bestätigt wird. Der verwendete Aktienindex, einzelne reale Konjunkturindikatoren und der dynamische Faktor korrelieren eng miteinder. Die Bildung sektoraler Sub-Indizes zeigt, dass der Übergang von einer landwirtschaftlich zu einer industriell geprägten Volkswirtschaft vermutlich früher geschehen ist als Beschäftigungsanteile aus der Historischen VGR vermuten lassen. Die Untersuchung der U.S.-Konjunktur ergibt die Annahme zeitvariierender Strukturparameter eine Erhöhung der Konjunkturschwankungsbreite nach dem 2. Weltkrieg verglichen mit der Zeit vor dem 1. Weltkrieg. Für die Weizenmarktintegration in Europa zeigt sich, dass die Entwicklung vor der Mitte des 19. Jahrhunderts schneller voran ging als danach, was eine Neuinterpretation der Rolle von Technologien wie dem Metallrumpf und dem Dampfschiff sowie dem Eintritt Amerikas als Weizenproduzenten nahelegt. / This thesis addresses historical business cycles and market integration in Europe and America in the 19th and 20th centuries. For the analysis of historical business cycles, the widely used methodology of historical national accounting is complemented with a dynamic factor model that allows for using scarce historical data efficiently. In order to investigate how national and international markets developed since the early 1800s, a multivariate dynamic factor model is used. Spectral analysis helps in measuring frequency specific correlation between financial indicators and rivaling national income estimates for Germany between 1850 and 1913. One result is that the historical stock market index used helps to discriminate between competing estimates of German national income. A dynamic factor estimated from a broad time series data set confirms this result. Sub-indices for agriculture and industry suggest that the German economy industrialized earlier than evidence from national accounting shows. The finding for the U.S. business cycle is that relaxing the assumption of constant structural parameters yields higher postwar aggregate volatility relative to the period before World War I. Concerning market integration, it is found that European wheat markets integrated faster before mid-19th century than after. Thus, the impact of the metal hull and steam ship as well as the relevance of American wheat for the world wheat market have perhaps been overstated.
|
2 |
Essays on business cycle analysis and demographySarferaz, Samad 28 June 2010 (has links)
Diese Arbeit besteht aus vier Essays, die empirische und methodische Beiträge zur Messung von Konjunkturzyklen und deren Zusammenhänge zu demographischen Variablen liefern. Der erste Essay analysiert unter Zuhilfenahme eines Bayesianischen Dynamischen Faktormodelles die Volatilität des US-amerikanischen Konjunkturzyklus seit 1867. In dem Essay wird gezeigt, dass die Volatilität in der Periode vor dem Ersten Weltkrieg und nachdem Zweiten Weltkrieg niedriger war als in der Zwischenkriegszeit. Eine geringere Volatilität für die Periode nach dem Zweiten Weltkrieg im Vergleich zu der Periode vor dem Ersten Weltkrieg kann nicht bestätigt werden. Der zweite Essay hebt die Bayesianischen Eigenschaften bezüglich dynamischer Faktormodelle hervor. Der Essay zeigt, dass die ganze Analyse hindurch - im Gegensatz zu klassischen Ansätzen - keine Annahmen an die Persistenz der Zeitreihen getroffen werden muss. Des Weiteren wird veranschaulicht, wie im Bayesianischen Rahmen die Anzahl der Faktoren bestimmt werden kann. Der dritte Essay entwickelt einen neuen Ansatz, um altersspezifische Sterblichkeitsraten zu modellieren. Kovariate werden mit einbezogen und ihre Dynamik wird gemeinsam mit der von latenten Variablen, die allen Alterklassen zugrunde liegen, modelliert. Die Resultate bestätigen, dass makroökonomische Variablen Prognosekraft für die Sterblichkeit beinhalten. Im vierten Essay werden makroökonomischen Zeitreihen zusammen mit altersspezifischen Sterblichkeitsraten einer strukturellen Analyse unterzogen. Es wird gezeigt, dass sich die Sterblichkeit von jungen Erwachsenen in Abhängigkeit von Konjunkturzyklen deutlich von den der anderen Alterklassen unterscheidet. Daher sollte in solchen Analysen, um Scheinkorrelation vorzubeugen, zwischen den einzelnen Altersklassen differenziert werden. / The thesis consists of four essays, which make empirical and methodological contributions to the fields of business cycle analysis and demography. The first essay presents insights on U.S. business cycle volatility since 1867 derived from a Bayesian dynamic factor model. The essay finds that volatility increased in the interwar periods, which is reversed after World War II. While evidence can be generated of postwar moderation relative to pre-1914, this evidence is not robust to structural change, implemented by time-varying factor loadings. The second essay scrutinizes Bayesian features in dynamic index models. The essay shows that large-scale datasets can be used in levels throughout the whole analysis, without any pre-assumption on the persistence. Furthermore, the essay shows how to determine the number of factors accurately by computing the Bayes factor. The third essay presents a new way to model age-specific mortality rates. Covariates are incorporated and their dynamics are jointly modeled with the latent variables underlying mortality of all age classes. In contrast to the literature, a similar development of adjacent age groups is assured, allowing for consistent forecasts. The essay demonstrates that time series of covariates contain predictive power for age-specific rates. Furthermore, it is observed that in particular parameter uncertainty is important for long-run forecasts, implicating that ignoring parameter uncertainty might yield misleadingly precise predictions. In the fourth essay the model developed in the third essay is utilized to conduct a structural analysis of macroeconomic fluctuations and age-specific mortality rates. The results reveal that the mortality of young adults, concerning business cycles, noticeably differ from the rest of the population. This implies that differentiating closely between particular age classes, might be important in order to avoid spurious results.
|
Page generated in 0.0261 seconds