1 |
Amélioration des estimations quantitatives des précipitations à hautes résolutions : comparaison de deux techniques combinant les observations et application à la vérification spatiale des modèles météorologiques / Improvement of quantitative precipitation estimations at high resolutions : comparison of two techniques combining observations and application to spatial forecast verification of numerical weather modelsLegorgeu, Carole 18 June 2013 (has links)
Ces dernières années, de nombreux efforts ont été entrepris pour mieux comprendre les phénomènes précipitants parfois à l’origine de crues de cours d’eau et d’inondations ravageuses. Courant 2009, un consortium auvergnat a été mis en place pour notamment surveiller et prévoir ces événements. Les travaux menés dans cette thèse visent d’une part à améliorer les estimations quantitatives des précipitations (QPE) et d’autre part à vérifier les prévisions issues de modèles numériques sur de petites zones d’étude telles qu’une agglomération. L’observation des précipitations peut être réalisée à l’aide soit d’un pluviomètre qui fournit une mesure directe et précise de la quantité de pluie tombée au sol mais ne renseigne pas sur la variabilité spatiale des pluies soit d'un RADAR météorologique qui donne une représentation détaillée de la structure spatiale des précipitations mais dont les estimations sont sujettes à diverses erreurs d’autant plus prononcées en régions montagneuses. Le premier défit de cette thèse a été de trouver la meilleure façon de combiner ces deux informations complémentaires. Deux techniques géostatistiques ont été sélectionnées pour obtenir la meilleur QPE : le krigeage avec dérive externe (KED) et la fusion conditionnée (MERG). Les performances de ces deux méthodes ont été comparées au travers de deux domaines d’étude qui présentent des résolutions spatio-temporelles différentes. La seconde partie de cette thèse est consacrée à la mise en place d’une méthodologie fiable permettant de comparer spatialement les champs de QPE alors reconstruits et les prévisions quantitatives des précipitations (QPF). L’effort fut porté sur le modèle « Weather Research et Forcasting » (WRF). Une étude préliminaire a été réalisée pour tester les capacités du modèle et plus particulièrement des schémas de microphysique à reproduire la pluie. Cette étude assure ainsi l’obtention de prévisions réalistes pour une application sur des cas réels. L’appréciation de la qualité des QPF s’est focalisée sur la quantification spatiale des erreurs de prévision en termes de structure, d’intensité et de localisation des systèmes précipitants (SAL : Wernli et al. 2008, 2009). / In the last decades, many efforts were made to better understand the origins of rain that sometimes lead to rivers runoff or devastating floods. In 2009, a consortium took place in Auvergne in order to observe and predict these events. These works were focused on the improvement of quantitative precipitation estimations (QPE) and the verification of numerical weather models over small areas such as urban environment. Rainfall measurement could be operated either by rain gauges which provides direct and precise rainfall estimations but unfortunately cannot capture the spatial variability or by using weather RADAR which provides a detailed spatial representation of precipitation but estimates are derived indirectly and are subject to a combination of errors which are most pronounced over complex terrain. The main issue of these works was to find the best way to combine both observational systems which are complementary as well. In order to obtain the more truthful fields of QPE, two geostatistical techniques were selected: the kriging with external drift (KED) and the conditional merging (MERG). The performances of these two methods have been experienced on two catchments with different spatial and temporal resolutions. The second part of these works is focused on a reliable method for QPE comparison and quantitative precipitation forecast (QPF). The main effort was focused on the “Weather Research and Forecasting” (WRF) model. A preliminary study was made to check the performances of the microphysics schemes of the model to ensure realistic forecasts for an application on real cases. The spatial verification of the model set up contains three distinct components that consider aspects of the structure, amplitude and location of the precipitation field (SAL : Wernli et al. 2008, 2009).
|
2 |
Improvements in Flood Forecasting in Mountain Basins through a Physically-Based Distributed ModelJanuary 2012 (has links)
abstract: This doctoral thesis investigates the predictability characteristics of floods and flash floods by coupling high resolution precipitation products to a distributed hydrologic model. The research hypotheses are tested at multiple watersheds in the Colorado Front Range (CFR) undergoing warm-season precipitation. Rainfall error structures are expected to propagate into hydrologic simulations with added uncertainties by model parameters and initial conditions. Specifically, the following science questions are addressed: (1) What is the utility of Quantitative Precipitation Estimates (QPE) for high resolution hydrologic forecasts in mountain watersheds of the CFR?, (2) How does the rainfall-reflectivity relation determine the magnitude of errors when radar observations are used for flood forecasts?, and (3) What are the spatiotemporal limits of flood forecasting in mountain basins when radar nowcasts are used into a distributed hydrological model?. The methodology consists of QPE evaluations at the site (i.e., rain gauge location), basin-average and regional scales, and Quantitative Precipitation Forecasts (QPF) assessment through regional grid-to-grid verification techniques and ensemble basin-averaged time series. The corresponding hydrologic responses that include outlet discharges, distributed runoff maps, and streamflow time series at internal channel locations, are used in light of observed and/or reference data to diagnose the suitability of fusing precipitation forecasts into a distributed model operating at multiple catchments. Results reveal that radar and multisensor QPEs lead to an improved hydrologic performance compared to simulations driven with rain gauge data only. In addition, hydrologic performances attained by satellite products preserve the fundamental properties of basin responses, including a simple scaling relation between the relative spatial variability of runoff and its magnitude. Overall, the spatial variations contained in gridded QPEs add value for warm-season flood forecasting in mountain basins, with sparse data even if those products contain some biases. These results are encouraging and open new avenues for forecasting in regions with limited access and sparse observations. Regional comparisons of different reflectivity -rainfall (Z-R) relations during three summer seasons, illustrated significant rainfall variability across the region. Consistently, hydrologic errors introduced by the distinct Z-R relations, are significant and proportional (in the log-log space) to errors in precipitation estimations and stream flow magnitude. The use of operational Z-R relations without prior calibration may lead to wrong estimation of precipitation, runoff magnitude and increased flood forecasting errors. This suggests that site-specific Z-R relations, prior to forecasting procedures, are desirable in complex terrain regions. Nowcasting experiments show the limits of flood forecasting and its dependence functions of lead time and basin scale. Across the majority of the basins, flood forecasting skill decays with lead time, but the functional relation depends on the interactions between watershed properties and rainfall characteristics. Both precipitation and flood forecasting skills are noticeably reduced for lead times greater than 30 minutes. Scale dependence of hydrologic forecasting errors demonstrates reduced predictability at intermediate-size basins, the typical scale of convective storm systems. Overall, the fusion of high resolution radar nowcasts and the convenient parallel capabilities of the distributed hydrologic model provide an efficient framework for generating accurate real-time flood forecasts suitable for operational environments. / Dissertation/Thesis / Ph.D. Civil and Environmental Engineering 2012
|
3 |
Amélioration des estimations quantitatives des précipitations à hautes résolutions : comparaison de deux techniques combinant les observations et application à la vérification spatiale des modèles météorologiquesLegorgeu, Carole 18 June 2013 (has links) (PDF)
Ces dernières années, de nombreux efforts ont été entrepris pour mieux comprendre les phénomènes précipitants parfois à l'origine de crues de cours d'eau et d'inondations ravageuses. Courant 2009, un consortium auvergnat a été mis en place pour notamment surveiller et prévoir ces événements. Les travaux menés dans cette thèse visent d'une part à améliorer les estimations quantitatives des précipitations (QPE) et d'autre part à vérifier les prévisions issues de modèles numériques sur de petites zones d'étude telles qu'une agglomération. L'observation des précipitations peut être réalisée à l'aide soit d'un pluviomètre qui fournit une mesure directe et précise de la quantité de pluie tombée au sol mais ne renseigne pas sur la variabilité spatiale des pluies soit d'un RADAR météorologique qui donne une représentation détaillée de la structure spatiale des précipitations mais dont les estimations sont sujettes à diverses erreurs d'autant plus prononcées en régions montagneuses. Le premier défit de cette thèse a été de trouver la meilleure façon de combiner ces deux informations complémentaires. Deux techniques géostatistiques ont été sélectionnées pour obtenir la meilleur QPE : le krigeage avec dérive externe (KED) et la fusion conditionnée (MERG). Les performances de ces deux méthodes ont été comparées au travers de deux domaines d'étude qui présentent des résolutions spatio-temporelles différentes. La seconde partie de cette thèse est consacrée à la mise en place d'une méthodologie fiable permettant de comparer spatialement les champs de QPE alors reconstruits et les prévisions quantitatives des précipitations (QPF). L'effort fut porté sur le modèle " Weather Research et Forcasting " (WRF). Une étude préliminaire a été réalisée pour tester les capacités du modèle et plus particulièrement des schémas de microphysique à reproduire la pluie. Cette étude assure ainsi l'obtention de prévisions réalistes pour une application sur des cas réels. L'appréciation de la qualité des QPF s'est focalisée sur la quantification spatiale des erreurs de prévision en termes de structure, d'intensité et de localisation des systèmes précipitants (SAL : Wernli et al. 2008, 2009).
|
4 |
Building a Replicable Flood Forecast Mitigation Support System to Simplify Emergency Decision-MakingMcCullough, Christina M. 09 June 2011 (has links)
No description available.
|
Page generated in 0.0161 seconds