131 |
Formation of bulk nanocrystalline materials. / CUHK electronic theses & dissertations collectionJanuary 1999 (has links)
by Guo Wenhua. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
132 |
Têmpera e partição de ferros fundidos nodulares: microestrutura e cinética. / Quenching and partitioning of ductile cast irons: microstructure and kinetics.Nishikawa, Arthur Seiji 01 October 2018 (has links)
Este trabalho está inserido em um projeto que procura estudar a viabilidade técnica da aplicação de um relativamente novo conceito de tratamento térmico, chamado de Têmpera e Partição (T&P), como alternativa para o processamento de ferros fundidos nodulares com alta resistência mecânica. O processo T&P tem por objetivo a obtenção de microestruturas multifásicas constituídas de martensita e austenita retida, estabilizada em carbono. A martensita confere elevada resistência mecânica, enquanto a austenita confere ductilidade. No processo T&P, após a austenitização total ou parcial da liga, o material é temperado até uma temperatura de têmpera TT entre as temperaturas Ms e Mf para produzir uma mistura controlada de martensita e austenita. Em seguida, na etapa de partição, o material é mantido isotermicamente em uma temperatura igual ou mais elevada (denominada temperatura de partição TP) para permitir a partição de carbono da martensita para a austenita. O carbono em solução sólida diminui a temperatura Ms da austenita, estabilizando-a à temperatura ambiente. O presente trabalho procurou estudar aspectos de transformações de fases -- com ênfase na evolução microestrutural e cinética das reações -- do tratamento térmico de Têmpera e Partição (T&P) aplicado a uma liga de ferro fundido nodular (Fe-3,47%C-2,47%Si-0,2%Mn). Tratamentos térmicos consistiram de austenitização a 880 oC por 30 min, seguido de têmpera a 140, 170 e 200 oC e partição a 300, 375 e 450 oC por até 2 h. A caracterização microestrutural foi feita por microscopia óptica (MO), eletrônica de varredura (MEV), difração de elétrons retroespalhados (EBSD) e análise de microssonda eletrônica (EPMA). A análise cinética foi feita por meio de ensaios de dilatometria de alta resolução e difração de raios X in situ usando radiação síncrotron. Resultados mostram que a ocorrência de reações competitivas -- reação bainítica e precipitação de carbonetos na martensita -- é inevitável durante a aplicação do tratamento T&P à presente liga de ferro fundido nodular. A cinética da reação bainítica é acelerada pela presença da martensita formada na etapa de têmpera. A reação bainítica acontece, a baixas temperaturas, desacompanhada da precipitação de carbonetos e contribui para o enriquecimento em carbono, e consequente estabilização, da austenita. Devido à precipitação de carbonetos na martensita, a formação de ferrita bainítica é o principal mecanismo de enriquecimento em carbono da austenita. A microssegregação proveniente da etapa de solidificação permanece no material tratado termicamente e afeta a distribuição da martensita formada na etapa de têmpera e a cinética da reação bainítica. Em regiões correspondentes a contornos de célula eutética são observadas menores quantidades de martensita e a reação bainítica é mais lenta. A microestrutura final produzida pelo tratamento T&P aplicado ao ferro fundido consiste de martensita revenida com carbonetos, ferrita banítica e austenita enriquecida estabilizada pelo carbono. Adicionalmente, foi desenvolvido um modelo computacional que calcula a redistribuição local de carbono durante a etapa de partição do tratamento T&P, assumindo os efeitos da precipitação de do crescimento de placas de ferrita bainítica a partir da austenita. O modelo mostrou que a cinética de partição de carbono da martensita para a austenita é mais lenta quando os carbonetos precipitados são mais estáveis e que, quando a energia livre dos carbonetos é suficientemente baixa, o fluxo de carbono acontece da austenita para a martensita. A aplicação do modelo não se limita às condições estudadas neste trabalho e pode ser aplicada para o planejamento de tratamentos T&P para aços. / The present work belongs to a bigger project whose main goal is to study the technical feasibility of the application of a relatively new heat treating concept, called Quenching and Partitioning (Q&P), as an alternative to the processing of high strength ductile cast irons. The aim of the Q&P process is to obtain multiphase microstructures consisting of martensite and carbon enriched retained austenite. Martensite confers high strength, whereas austenite confers ductility. In the Q&P process, after total or partial austenitization of the alloy, the material is quenched in a quenching temperature TQ between the Ms and Mf temperatures to produce a controlled mixture of martensite and austenite. Next, at the partitioning step, the material is isothermally held at a either equal or higher temperature (so called partitioning temperature TP) in order to promote the carbon diffusion (partitioning) from martensite to austenite. The present work focus on the study of phase transformations aspects -- with emphasis on the microstructural evolution and kinetics of the reactions -- of the Q&P process applied to a ductile cast iron alloy (Fe-3,47%C-2,47%Si-0,2%Mn). Heat treatments consisted of austenitization at 880 oC for 30 min, followed by quenching at 140, 170, and 200 oC and partitioning at 300, 375 e 450 oC up to 2 h. The microstructural characterization was carried out by optical microscopy (OM), scanning electron microscopy (SEM), backscattered diffraction (EBSD), and electron probe microanalysis (EPMA). The kinetic analysis was studied by high resolution dilatometry tests and in situ X-ray diffraction using a synchrotron light source. Results showed that competitive reactions -- bainite reaction and carbides precipitation in martensite -- is unavoidable during the Q&P process. The bainite reaction kinetics is accelerated by the presence of martensite formed in the quenching step. The bainite reaction occurs at low temperatures without carbides precipitation and contributes to the carbon enrichment of austenite and its stabilization. Due to carbides precipitation in martensite, growth of bainitic ferrite is the main mechanism of carbon enrichment of austenite. Microsegregation inherited from the casting process is present in the heat treated material and affects the martensite distribution and the kinetics of the bainite reaction. In regions corresponding to eutectic cell boundaries less martensite is observed and the kinetics of bainite reaction is slower. The final microestructure produced by the Q&P process applied to the ductile cast iron consists of tempered martensite with carbides, bainitic ferrite, and carbon enriched austenite. Additionally, a computational model was developed to calculate the local kinetics of carbon redistribution during the partitioning step, considering the effects of carbides precipitation and bainite reaction. The model showed that the kinetics of carbon partitioning from martensite to austenite is slower when the tempering carbides are more stable and that, when the carbides free energy is sufficiently low, the carbon diffuses from austenite to martensite. The model is not limited to the studied conditions and can be applied to the development of Q&P heat treatments to steels.
|
133 |
The influence of Hot Forming-Quenching (HFQ) on the microstructure and corrosion performance of AZ31 magnesium alloysAlias, Juliawati January 2016 (has links)
The hot forming-quenching (HFQ) process has introduced grains and subgrain growth, accompanied with modification of the intermetallic particle distribution in AZ31 magnesium alloys. Each region of the HFQ component represents significant grain structure variation and surface conditions that contributed to the corrosion susceptibility. The homogeneous grain structure significantly ruled the corrosion propagation features by filiform-like corrosion. Immersion of AZ31 alloys in 3.5 wt.% NaCl indicated higher corrosion rate of HFQ TRC (corrosion rate: 10.129 mm/year), a factor of 10 times, higher than the rolled alloy (corrosion rate: 0.853 mm/year) and a factor of 2 times, higher than the corrosion rate of MCTRC alloy (corrosion rate: 5.956 mm/year). Much lower corrosion rate was indicated in the as-cast TRC and MCTRC alloys, compared to the alloys after HFQ process that revealed the contribution of network or continuous distribution of β-Mg17Al12 phase particles to reduce the corrosion driven in chloride solution. In contrast, discontinuous distribution of cathodic β-Mg17Al12 phase particles increases the corrosion rate of HFQ TRC alloy by promoting the cathodic reaction and intense filament propagation resembling the coarse interdendritic and grain boundaries attack. The presence of high population densities of cathodic Al8Mn5 particles in HFQ rolled AZ31B-H24 alloy significantly reduced the corrosion driven for intense corrosion attack on the rolled alloy. The surface preparation by mechanical grinding process induced MgO and Zn-enrichment layer, accompanied with near surface deformed layer that consisted of nanograins in the range size of 40 to 250 nm. The grinding process refined the surface by removing the cutting damage and marks that formed during the thermomechanical process and led to stable potential of the HFQ AZ31 alloys, in the range of -1.59 to -1.57 V, during open circuit potential (OCP) measurement. The surface regularity with grinding path causing the filament to propagate following the grinding direction. The as-received surface contained many cutting damages and deep scratch marks from the rolling and casting processes that could introduce many corrosion initiation sites. The absence of the grinding direction on the as-received surface could control intense corrosion susceptibility, due to the non-linear filament propagation. The surface irregularity on chromic acid cleaned surface of HFQ rolled AZ31B-H24 alloy also contributed to low corrosion potential of the rolled alloy during OCP and potentiodynamic polarization measurement.
|
134 |
Evolution of barred galaxies and associated structuresKruk, Sandor J. January 2018 (has links)
Bars are common in disc galaxies along with many associated structures such as disc-like bulges, boxy/peanut bulges, rings, etc. They are a sign of maturity of disc galaxies and can play an important role in their evolution. In this thesis, I investigate the specific role bars play in quenching the star formation in, and shaping of their host galaxies. In order to test how bars affect their host galaxies, I study the discs, bars and bulges of what is currently the largest sample of barred galaxies (~3,500), selected with visual morphologies from the Galaxy Zoo project. I perform multi-wavelength and multi-component photometric decomposition, with the novel GALFITM software. With the detailed structural analysis I obtain physical quantities such as the bar- and bulge-to-total luminosity ratios, effective radii, Sérsic indices and colours of the individual components. I find a clear difference in the colours of the components, the discs being bluer than the bars and bulges. An overwhelming fraction of bulge components have Sérsic indices consistent with being disc-like bulges. I compare the barred galaxies with a mass- and environment-matched volume-limited sample of unbarred galaxies, finding that the discs of unbarred galaxies are bluer compared to the discs of barred galaxies, while there is only a small difference in the colours of the bulges. I suggest that this is evidence for secular evolution via bars that leads to the build-up of disc-like bulges and to the quenching of star formation in the galaxy discs. I identify a subsample of unbarred galaxies that are better fitted with an additional component, identified as an inner lens/oval. I find that their structural properties are similar to barred galaxies, and speculate that lenses might be former bars. Using the decompositions, I identify a sample of 271 late-type galaxies with curious bars that are off-centre from the disc. I measure offsets up to 2.5 kpc between the photometric centres of the stellar disc and stellar bar, which are in good agreement with predictions from simulations of dwarf-dwarf tidal interactions. The median mass of these galaxies is 10<sup>9.6</sup> M<sub>⊙</sub>, and they are similar to the Large Magellanic Cloud, which also has an offset bar. Very few high mass galaxies with significant bulges show offsets, thus I suggest that the self-gravity of a significant bulge prevents the disc and bar from getting displaced with respect to each other. I conduct a search for companions to test the hypothesis of tidal interactions, but find that a similar fraction of galaxies with offset bars have companions within 100 kpc as galaxies with centred bars. Since many of these galaxies appear isolated, interactions might not be the only way to produce an offset bar. One suggested alternative is that the dark matter haloes surrounding the galaxies are lopsided, which distorts the potential, and imprints the lopsidedness and offsets onto the galaxy discs. I investigate the asymmetries in the kinematics of a subsample of such galaxies using data from the MaNGA survey, and find that the perturbations in the haloes are ~ 6% for both galaxies with off-centre and centred bars. I also measure the amplitude of non-circular motions in the outer discs due to an oval potential and find only minor departures from circularity, suggesting that the dark matter haloes are consistent with being spherical (axis ratio q ≳ 0.96). Therefore, the lopsidedness of the dark matter haloes cannot be the origin of the offsets. Either small companions are missed due to the incompleteness of the Sloan Digital Sky Survey spectroscopic survey, or interactions with dark matter satellites might explain the offsets. Modeling the kinematics of these galaxies, I find that the Hα gas rotation is centred closer to the centre of the bar than the centre of stellar rotation, suggesting that, in general, the bars are located closer to the dynamical centres of these galaxies than the discs. This implies that the discs are offset in these galaxies, not the bars. If offsets are characteristic of low mass galaxies only, high mass galaxies show vertically extended bars, known as boxy/peanut bulges. I investigate, for the first time, the formation and evolution of these structures associated to bars, from z≈0 to z=1. I compare two samples of moderately inclined galaxies with masses M<sub>*</sub> > 10<sup>10</sup> M<sub>⊙</sub>, imaged by the Sloan Digital Sky Survey and the Hubble Space Telescope. Using a novel technique to classify bar isophotes, and based on the visual inspection of three expert astronomers, I find an evolving fraction of galaxies having boxy/peanut bulges from 30% at z≈0 to ~ 0% at z=1, and a strong correlation with stellar mass. I find 26 galaxies (15 at higher redshifts) in the phase of bar buckling, the mechanism proposed to form boxy/peanut bulges. The peak redshift of buckling is z≈0.75, where the bar buckling fraction is 4 times higher than in the local Universe. My observations suggest that many, if not all, of the boxy/peanut bulges are formed via buckling, ~ 2 Gyr after bar formation, with the buckling phase lasting for approximately 0.8 Gyr. I discuss my findings in the context of the evolution of barred galaxies and propose ideas for future work - applying similar decomposition techniques to higher redshift, and better resolution datasets, using integral field spectroscopic data to study the stellar populations of barred galaxies in greater detail, as well as a novel project to identify large nuclear discs in galaxies.
|
135 |
Single-Photon Avalanche Diode theory, simulation, and high performance CMOS integrationWebster, Eric Alexander Garner January 2013 (has links)
This thesis explores Single-Photon Avalanche Diodes (SPADs), which are solid-state devices for photon timing and counting, and concentrates on SPADs integrated in nano-scale CMOS. The thesis focuses on: the search for new theory regarding Geiger-mode operation; proving the utility of calibrated Technology Computer- Aided Design (TCAD) tools for accurately simulating SPADs for the first time; the investigation of how manufacture influences device operation; and the integration of high performance SPADs into CMOS which rival discrete devices. The accepted theories of SPAD operation are revisited and it is discovered that previously neglected minority carriers have many significant roles such as determining: after-pulsing, Dark Count Rate (DCR), bipolar “SPAD latch-up,” nonequilibrium DCR, and “quenching”. The “quenching” process is revisited and it is concluded that it is the “probability time” of ≈100-200ps, and not the previously thought latching current that is important. SPADs are also found to have transient negative differential resistance. The new theories of SPADs are also supported by steady-state 1D, 2D and 3D TCAD simulations as well as novel transient simulations and videos. It is demonstrated as possible to simulate DCR, Photon Detection Efficiency (PDE), guard ring performance, breakdown voltage, breakdown voltage variation, “quenching,” and transient operation of SPADs with great accuracy. The manufacture of SPADs is studied focusing on the operation and optimisation of guard rings and it is found that ion implantation induced asymmetry from the tilt and rotation/twist is critical. Where symmetric, guard rings fail first along the <100> directions due to enhanced mobility. Process integration rules are outlined for obtaining high performance SPADs in CMOS while maintaining compatibility with transistors. The minimisation of tunnelling with lightly-doped junctions and the reduction of ion implantation induced defects by additional annealing are found essential for achieving low DCR. The thesis demonstrates that it is possible to realise high performance SPADs in CMOS through the innovation of a “Deep SPAD” which achieves record PDE of ≈72% at 560nm with >40% PDE from 410-760nm, combined with 18Hz DCR, <60ps FWHM timing resolution, and <4% after-pulsing which is demonstrated to have potential for significant further improvement. The findings suggest that CMOS SPAD-based micro-systems could outperform existing photon timing and counting solutions in the future.
|
136 |
Spontaneous small molecule migration via reversible Michael reactionsLewandowska, Urszula January 2013 (has links)
Small molecule walkers developed to date take advantage of the reversibility of dynamic covalent bond formation to transport molecular fragments along molecular tracks using both diffusion processes and ratchet mechanisms. However, external intervention (the addition of chemical reagents and/or irradiation with light) is required to mediate each step taken by the walker unit in systems reported so far. In this Thesis, the first synthetic small molecule able to walk back-and-forth upon an oligoethylenimine track without external intervention via intramolecular Michael and retro- Michael reactions is described. The 1D random walk is highly processive and exchange takes place between adjacent amine groups in a stepwise fashion. The walker is used to perform a simple task: quenching of the fluorescence of an anthracene group situated at one end of the track as a result of the walking progress. In the presence of excess of base, the molecule preferentially ‘walks’ towards the favoured final foothold of tracks of increasing length and it is possible to monitor the population of all or a few positional isomers over time. In each case the molar fraction of walkers reaching the final foothold is determined quantitatively by 1H NMR. Control over the rate of exchange is achieved by varying the amount of base added. The dynamic migration of a small molecule upon the track is a diffusion process limited to one dimension and as such can in principle be described using the one dimensional random walk. Chapter I identifies a set of fundamental walker characteristics and includes an overview of the DNA-based and small molecule transporting systems published to date. Chapter II describes the inspiration for this work and model studies which lay the groundwork for the research presented in this thesis. The initial track architecture and optimisation of reaction conditions are demonstrated using a simple model compound which then led to the development and a detailed investigation of a first synthetic small molecule able to walk upon an oligoethylenimine track without external intervention. Chapter III presents a modified synthetic route towards the desired walker-track architectures and a comprehensive investigation of the dynamic properties of a series of tracks of increasing length upon which the walker migrates in a unidirectional fashion. The Outlook contains closing remarks about the scope and significance of the presented work as well as ideas for the design of novel small-molecule walkers, some of which are well under way in the laboratory. Chapter II (with the exception of model studies included at the beginning of the chapter) is presented in the form of article that has recently been published. No attempt has been made to re-write this work out of context other than merging content of the article with the supplementary information published together with the article. Chapter II is reproduced in the Appendix in its published format.
|
137 |
ON THE RELATIONSHIP BETWEEN MICROSTRUCTURE DEVELOPMENT AND MECHANICAL PROPERTIES IN Q&P STEELSHuyghe, Pierre 08 November 2018 (has links) (PDF)
The Quenching and Partitioning (Q&P) heat treatment has been proposed in the early 2000s to produce cold-rolled sheets combining high-strength and formability for the automotive market. Q&P consists, first, of an interrupted quench between the martensite-start temperature (Ms) and the martensite-finish temperature (Mf) from intercritical annealing or full austenitization in order to form controlled fractions of martensite. This is followed by a partitioning step in order to stabilize the untransformed austenite through carbon enrichment. In order to maximize the carbon transfer from martensite to austenite, the use of specific alloying elements and the design of appropriate Q&P parameters are required to eliminate or minimize competing phenomena such as carbide formation and austenite decomposition. The final quenched and partitioned microstructure, using full austenitization, ideally consists of carbon-depleted lath martensite and significant fractions of retained austenite providing an improved combination of strength and ductility. Hence, the transformation of retained austenite upon straining at room temperature (TRIP effect) provides supplementary work-hardening and eventually improves the ductility. In the present work, Quenching and Partitioning (Q & P) heat treatments were carried out in a quench dilatometeron a 0.2 wt% carbon steel. The microstructure evolution of the Q & P steels was characterized usingdilatometry, SEM, EBSD and XRD. The martensitic transformation profile was analyzed in order to estimate thefraction of martensite formed at a given temperature below the martensite start temperature Ms. Q & P wasshown to be an effective way to stabilize retained austenite at room temperature. However, the measuredaustenite fractions after Q & P treatments showed significant differences when compared to the calculated valuesconsidering ideal partitioning conditions. Indeed, the measured austenite fractions were found to be less sensitiveto the quench temperature and were never larger than the ideal predicted maximum fraction. Competitivereactions such as austenite decomposition into bainite and carbide precipitation were found to occur in thepresent work.Furthermore, a broad range of mechanical properties was obtained when varying the quenching temperaturesand partitioning times. The direct contributions between Q & P microstructural constituents -such as retainedaustenite as well as tempered/fresh martensite- and resulting mechanical properties were scrutinized. This wascritically discussed and compared to quenching and austempering (QAT) which is a more conventional processingroute of stabilizing retained austenite at room temperature. Finally, Q & P steels were shown to exhibit aninteresting balance between strength and ductility. The achievement of this interesting combination of mechanicalproperties was reached for much shorter processing times compared to QAT steels. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
138 |
Avaliação de meios de resfriamentos a base de soluções iônicas / Investigation of quenchants based on ionic solutionsZordão, Luís Henrique Pizetta 16 January 2019 (has links)
As propriedades mecânicas de componentes metálicos são influenciadas pela microestrutura que muitas vezes é determinada pelo ciclo de tratamento térmico submetido. No tratamento térmico de têmpera de aço: água, óleos, soluções poliméricas e soluções salinas podem ser utilizados como meio de resfriamento que apresentam diferentes características nos mecanismos de resfriamentos. Por exemplo, quando a água é usada como um meio de resfriamento uma estável camada de vapor é formada ao redor do metal em alta temperatura, resultando em uma transferência de calor não uniforme durante o processo de resfriamento, que geralmente é responsável por distorções e falhas no material. A adição de sal pode reduzir ou inibir a formação da camada de vapor melhorando a uniformidade de transferência de calor durante o resfriamento. Este trabalho objetiva-se em investigar o desempenho em resfriamento de diferentes soluções iônicas (NaCl, NaOH, NaNO2, Na2SO4, NaHCO3) variando-se a concentração, temperatura (25, 35 e 45°C) e agitação do meio (0, 500 e 800 rpm) e a sua utilização na têmpera de um aço de baixa temperabilidade. A caracterização destes meios e a influência de fatores externos foi realizada por meio de curvas de resfriamento, taxa de resfriamento, coeficiente de transferência de calor e fluxo de calor. A resposta a têmpera foi realizada em um aço SAE 1045 nas condições menos severas de resfriamento e caracterizada pelas medidas de dureza e avaliação metalográfica. A utilização de soluções iônicas, em geral, mostrou-se ser efetiva na inibição da camada de vapor, no aumento da extração de calor elevando-se as taxas de resfriamento e mantendo-se um alto fluxo de calor durante a maior parte da queda de temperatura, o que resulta em uma homogeneidade de resfriamento capaz de evitar distorções. Essas soluções mostraram-se ser capazes de temperar o aço SAE 1045. / The mechanical properties of steel components are influenced by the microstructure that is determined by the heat treatment cycle. In the quenching of the steel: water, oil, aqueous polymer solutions and aqueous salt solutions (brine) can be used as quenchants that exhibit different characteristic on cooling mechanisms. For example: when water is used as the cooling media, a stable vapor film is formed around the hot component resulting in non-uniformity of surface heat transfer during the cooling process which is often responsible for distortion and cracking. Salt addition can reduce or inhibit vapor film formation enhancing the uniformity of heat transfer during the cooling. This work will investigate the cooling performance of different ionic solutions (NaCl, NaOH, NaNO2, Na2SO4, NaHCO3) varying concentration, temperature (25, 35 and 45°C) and agitation of the quenchants (0, 500 and 800 rpm) and their use on quenching a low hardenable steel. The description of these medium and the influence of external factors were made using cooling curves, cooling rates, heat transfer coefficients and heat flux. Samples of SAE 1045 steel were quenched and evaluated by hardness measures and metallography. The use of ionic solutions, in general, has proved to be effective in to inhibit the vapor blanket, to increase heat extraction and keeping a high heat flux during the most part of the drop of the temperature that results in a homogeneous cooling able to avoid distortions. These solutions were abele to quench SAE 1045 steel.
|
139 |
A Study of the Effects of Titanium Dioxide Nanoparticles on the Fluorescent Intensity of Fluorescent Compounds in the Presence of Known Quenchers.Koka, Vivian Dzigbodi 17 December 2011 (has links)
Titanium Dioxide is a naturally occurring oxide of titanium. It has a wide range of uses in commercial products for providing whiteness and opacity. It has photocatalytic properties and can also be used to produce electricity in its nanoparticles form. This research is focused on investigating the effect of titanium dioxide nanoparticles in analysis of compounds using luminescence-based techniques. Quenching, which is one of the basic problems of fluorescent measurements, was studied in the presence of molecular oxygen and methyl iodide. The rutile phase of titanium dioxide nanoparticles was synthesized by the acid hydrolysis of titanium isobutoxide at low temperatures with nitric acid. The crystalline powder was dissolved at different concentrations and used to monitor the fluorescence intensities of carbazole, pyrene, and fluoranthene in the presence of methyl iodide and oxygen. Quenching by molecular oxygen was studied by comparing the fluorescence intensities of compounds with and without degassing the solutions. Titanium Dioxide was found to exhibit interesting effects on the fluorescent intensities of these compounds in the presence of quenchers.
|
140 |
Estudo das microestruturas e propriedades obtidas por tratamentos intercríticos e por tratamento de estampagem a quente em um aço Dual Phase classe 600. / Study of the microstructures and properties of Dual Phase DP 600 steel after intercritical heat treatments and hot stamping.Andrade Centeno, Dany Michell 12 November 2018 (has links)
Novos tratamentos térmicos e a otimização dos processos de conformação têm contribuído para o desenvolvimento de microestruturas multifásicas com excelente combinação de ductilidade e resistência mecânica. Parte dessa melhoria depende da presença de austenita retida, de sua estabilidade e fração volumétrica. O presente trabalho tem como objetivo caracterizar a evolução da microestrutura e comportamento das propriedades mecânicas do aço dual phase classe 600 (DP 600), após tratamentos térmicos intercríticos de têmpera e partição (Q&P) e reversão da martensita, assim como tratamentos termomecânicos de simulação física da estampagem a quente (HS), variando a deformação em 10% (HS 10) e 30% (HS 30), e combinando estampagem a quente com subsequente tratamento de têmpera e partição (HSQ&P). Duas condições microestruturais de partida diferentes foram utilizadas nos tratamentos térmicos. Para os tratamentos térmicos e termomecânicos Q&P, HS e HSQ&P a microestrutura de partida foi a bifásica (ferrita e martensita). Já para o tratamento térmico de reversão a microestrutura de partida foi modificada para martensítica. Os tratamentos puramente térmicos foram realizados no dilatômetro Bähr do Laboratório de Transformações de Fase (LTF); entretanto, os tratamentos termomecânicos foram feitos no simulador termomecânico Gleeble®, acoplado à linha de difração de raios X (XTMS) do Laboratório Nacional de Nanotecnologia (LNNano). A análise microestrutural foi feita com suporte de microscopia ótica (MO) e eletrônica de varredura (MEV-FEG), EBSD, e difração de raios X in situ e convencional. Avaliaram-se as propriedades mecânicas por ensaio de tração em corpos de prova sub-size e endentação instrumentada. As amostras Q&P, HS e HSQ&P foram submetidas a ensaios exploratórios de resistência ao trincamento por hidrogênio (HIC) segundo a norma NACE TM0284. Adicionalmente, foi feita a medição de hidrogênio ancorado na microestrutura estudada, após tratamentos, utilizando a técnica de dessorção térmica disponível no LNNano. A avaliação das mudanças microestruturais e de propriedades mecânicas após tratamentos térmicos foram discutidas separadamente para cada microestrutura de partida. Os resultados dos processos Q&P, HS e HSQ&P no aço, mostraram que a evolução da microestrutura levou a formação de uma microestrutura mais complexa do que a microestrutura ferrítico-martensítica simples do material como recebido. A complexa microestrutura é dada pela formação de ferrita epitaxial durante a etapa de tratamento intercrítico, ferrita induzida por deformação (DIFT) na etapa de deformação em alta temperatura e bainita na etapa de partição. Essa mistura microestrutural levou a variações na relação das frações volumétricas de ferrita e martensita em relação às frações iniciais do aço, assim como na presença de austenita retida e sua estabilidade. Com base nos resultados é possível afirmar que o processo Q&P produz um aumento nas propriedades mecânicas do material. Por outro lado, após o ensaio de HIC todas as amostras apresentaram susceptibilidade ao trincamento; contudo, a severidade do dano foi maior nas amostras deformadas HS 30. Os ensaios preliminares de dessorção mostraram maior aprisionamento de hidrogênio em armadilhas reversíveis nas amostras HSQ&P e irreversíveis na amostra HS 30. Na segunda parte, os resultados do tratamento de reversão sugerem que, em geral, a microestrutura do aço processado compreende uma morfologia em ripas de ferrita intercrítica, martensita e filmes de austenita retida. A maior temperatura de reversão intercrítica resultou em menor fração de ferrita intercrítica. Por outro lado, a temperatura intercrítica de reversão influenciou significativamente a estabilidade da austenita retida. Uma alta fração de austenita retida foi obtida a uma temperatura ligeiramente acima da temperatura Ac1. Um segundo ciclo de reversão promoveu a difusão de C e Mn para a austenita revertida tornando-a mais estável a temperatura ambiente. / Novel Heat Treatments and the optimization of the forming processes have contributed to the development of multiphase microstructures with attractive combinations of ductility and mechanical resistance. This improvement partially depends on the presence, stability and volume fraction of retained austenite. The objective of this work is to characterize the evolution of the microstructure and mechanical properties of a class 600 dual phase steel (DP 600), as a function of the thermal and thermomechanical history. Two initial microstructures were used in this study. A ferritic-martensitic microstructure was used as the starting condition for inter-critical heat treatments followed by quenching and partitioning (Q&P) and for the thermomechanical simulations of the hot stamping (HS) process. The latter applying deformations of 10% (HS 10) and 30% (HS 30) combining hot stamping with subsequent quenching and partition (HSQ&P). The thermal cycles were performed in a Bähr dilatometer at the Laboratory of Phase Transformations (LTF), then duplicated using a Gleeble® thermomechanical simulator, coupled to the X-ray Scattering and Thermo-mechanical Simulation beamline (XTMS) at the Brazilian Nanotechnology National Laboratory (LNNano). The microstructural analysis was performed using optical microscopy (MO) and scanning electron (SEM-FEG), Electron Backscatter Diffraction (EBSD), and in situ and conventional X-ray diffraction. The mechanical properties were evaluated by tensile testing on sub-size specimens and by instrumented macro-nano indentation tests. The evolution of the microstructure and mechanical properties for each starting microstructure was discussed separately. The Q&P, HS and HSQ&P samples were submitted to exploratory tests of resistance to hydrogen induced cracking (HIC) according to NACE TM0284. Additionally, hydrogen measurements were performed for the microstructures obtained after Q&P and HDQ&P using the thermal desorption technique at LNNano. After Q&P, HS and HSQ&P, the resultant microstructure was more complex than the as-received ferritic-martensitic condition. Such complexity comes from the formation of epitaxial ferrite from the former ferritic phase during the intercritical treatment step, the deformation induced ferrite (DIFT) and the bainite formation during the partitioning step. This led to variations in the volumetric fraction of ferrite and martensite in relation to the initial fractions of the as-received condition, as well as the presence of retained austenite and its stability upon cooling. The Q&P process increased the mechanical properties of the material. On the other hand, all microstructures showed susceptibility to hydrogen cracking after 72 hours of H2S exposure tests. However, the damage was more severe for the HS samples with 30% of deformation. The preliminary desorption tests showed greater hydrogen trapping in reversible traps after HSQ&P and in irreversible traps for the HS with 30% deformation. A second set of experiments was conducted for a different microstructure consisting of a fully martensitic matrix as the initial condition. After intercritical reversion, the resultant microstructure comprised intercritical lath-like ferrite, martensite laths and retained austenite films. The higher the intercritical reversion temperature, the smaller the fraction of intercritical ferrite. On the other hand, the transformation temperature significantly influenced the stability of the retained austenite. The highest fraction of retained austenite was obtained when the transformation occurred slightly above the Ac1 temperature. A double intercritical reversion cycle promoted the diffusion of C and Mn to the reversed austenite making it more stable upon cooling to room temperature, leading to a better combination of strength and ductility.
|
Page generated in 0.0876 seconds