Spelling suggestions: "subject:"quadratic forms"" "subject:"quadratic norms""
11 |
On Moments of Class Numbers of Real Quadratic FieldsDahl, Alexander Oswald 22 July 2010 (has links)
Class numbers of algebraic number fields are central invariants. Once the underlying field has an infinite unit group they behave very irregularly due to a non-trivial regulator. This phenomenon occurs already in the simplest case of real quadratic number fields of which very little is known.
Hooley derived a conjectural formula for the average of class numbers of real quadratic fields. In this thesis we extend his methods to obtain conjectural formulae and bounds for any moment, i.e., the average of an arbitrary real power of class numbers. Our formulae and bounds are based on similar (quite reasonable) assumptions of Hooley's work.
In the final chapter we consider the case of the -1 power from a numerical point of view and develop an efficient algorithm to compute the average for the -1 class number power without computing class numbers.
|
12 |
On Moments of Class Numbers of Real Quadratic FieldsDahl, Alexander Oswald 22 July 2010 (has links)
Class numbers of algebraic number fields are central invariants. Once the underlying field has an infinite unit group they behave very irregularly due to a non-trivial regulator. This phenomenon occurs already in the simplest case of real quadratic number fields of which very little is known.
Hooley derived a conjectural formula for the average of class numbers of real quadratic fields. In this thesis we extend his methods to obtain conjectural formulae and bounds for any moment, i.e., the average of an arbitrary real power of class numbers. Our formulae and bounds are based on similar (quite reasonable) assumptions of Hooley's work.
In the final chapter we consider the case of the -1 power from a numerical point of view and develop an efficient algorithm to compute the average for the -1 class number power without computing class numbers.
|
13 |
Results On Lcz Sequences And Quadratic FormsSaygi, Elif 01 November 2009 (has links) (PDF)
In this thesis we study low correlation zone (LCZ) sequence sets and a class of quadratic forms. In the first part we obtain two new classes of optimal LCZ sequence sets. In our first construction using a suitable orthogonal transformation we extend some results of [21]. We give new classes of LCZ sequence sets defined over Z4 in our second construction. We show that our LCZ sequence sets are optimal with respect to the Tang, Fan and Matsufiji bound [37]. In the second part we consider some special linearized polynomials and corresponding quadratic forms. We compute the number of solutions of certain equations related to these quadratic forms and we apply these result to obtain curves with many rational points.
|
14 |
Finding Zeros of Rational Quadratic FormsShaughnessy, John F 01 January 2014 (has links)
In this thesis, we introduce the notion of quadratic forms and provide motivation for their study. We begin by discussing Diophantine equations, the field of p-adic numbers, and the Hasse-Minkowski Theorem that allows us to use p-adic analysis determine whether a quadratic form has a rational root. We then discuss search bounds and state Cassels' Theorem for small-height zeros of rational quadratic forms. We end with a proof of Cassels' Theorem and suggestions for further reading.
|
15 |
Teorema 90 de Hilbert para o radical de Kaplansky e suas relações com o grupo de Galois do fecho quadrático / Hilbert's Theorem 90 for the Kaplansky's radical and its relations with Galois group of quadratic closureMatos, Fábio Alexandre de, 1976- 24 August 2018 (has links)
Orientador: Antonio José Engler / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-24T22:18:49Z (GMT). No. of bitstreams: 1
Matos_FabioAlexandrede_D.pdf: 1117786 bytes, checksum: ce8cedb8cf95de8f81d4d520e2d308ad (MD5)
Previous issue date: 2014 / Resumo: Apresentaremos neste trabalho um estudo sobre a aritmética corpos de característica distinta de 2 com um número finito de classes de quadrados. Dividido em duas partes, começaremos com um estudo do radical de Kaplansky de um corpo F e seu comportamento em 2-extensões de F. Na segunda parte introduziremos um novo objeto, as bases distinguidas, e exploraremos suas propriedades obtendo uma generalização do Teorema 90 de Hilbert, versão para o radical de Kaplansky, e propriedades cohomológicas de corpos que possuam base distinguida / Abstract: We will present in this work a study about the arithmetic of fields of characteristic different from 2 with a finite number of square class. Divided in two parts, we will start with a study of the Kaplansky¿s radical of a field F and its behavior in 2-extensions of F. In the second part will introduce a new object, the distinguished bases, and we will explore its properties obtaining a generalization of Hilbert¿s Theorem 90 for the Kaplansky's radical and cohomological properties of fields that own distinguished basis / Doutorado / Matematica / Doutor em Matemática
|
16 |
Sobre o numero de soluções de equações polinomiais em corpos finitos / On the number of solutions of polynomial equations on finite fieldsVeloso, Marcelo Oliveira 16 February 2005 (has links)
Orientador: Paulo Roberto Brumatti / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T02:10:19Z (GMT). No. of bitstreams: 1
Veloso_MarceloOliveira_M.pdf: 605567 bytes, checksum: 5882cdcae8b9c04096f915755c89a683 (MD5)
Previous issue date: 2005 / Resumo: O objetivo principal deste trabalho é o estudo do número de soluções de equações polinomiais definidas sobre corpos finitos. Para isto utilizamos resultados básicos sobre a soma de Caracteres e resultados sobre o número de soluções de uma Forma Quadrática. Na nossa abordagem procuramos utilizar técnicas bem elementares, apesar disto implicar num número maior de cálculos. Contudo este método permitiu estudar e determinar fórmulas para o número de soluções de determinadas equações polinomiais muito estudadas, sem a necessidade de ferramentas mais elaboradas. Dentre as aplicações das fórmulas obtidas, temos alguns exemplos de curvas algébricas planas cujo número de pontos racionais atingem a cota de Weil, ou seja, curvas maximais que são de grande interesse em teoria dos códigos. Também conseguimos exemplos de variedades projetivas sobre corpos finitos cujo número de pontos atingem a cota de Weil-Deligne / Abstract: The main objective of this work is to study the number of solutions of polynomial equations over finite fields. For that we used basic results on Character sums and on the number of solutions of a Quadratic Form. This approach uses elementary techniques even considering the increasing on computations. Therefore this method allowed us to study and determine formulae for the number of solutions of certain polynomial equations well known, without the need of more sophisticated tools. Among the applications of the obtained formulae, we have some examples of plane algebraic curves which number of rational points achieve the Weil bound, that is, maximal curves which are of great interest in code theory. In addition, other examples were obtained of projective manifolds over finite fields which number of points achieve the Weil-Deligne bound / Mestrado / Algebra / Mestre em Matemática
|
17 |
Elementos rigidos, valorizações e estrutura de aneis de Witt / Rigid elements, valuations and structure of Witt ringsPapa Neto, Angelo 09 December 2007 (has links)
Orientador: Antonio Jose Engler / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T13:32:53Z (GMT). No. of bitstreams: 1
PapaNeto_Angelo_D.pdf: 939822 bytes, checksum: 40aedb2e25f1f22956a7ff182038cae3 (MD5)
Previous issue date: 2007 / Resumo: Um corpo ordenado é uma estrutura algébrica similar à do corpo dos números reais. No entanto, ao contrário dos reais, um corpo arbitrário F pode admitir mais de uma ordem, inclusive um número infinito e não enumerável de ordens. A cada elemento x do corpo F podemos associar uma forma quadrática binária [1, x], chamada 1-forma de Pfister. Os elementos de F = F 0} representados por [1, x], constituem um grupo que chamamos grupo de valores da forma e denotamos por D[1,x]. Um elemento d S F é chamado rígido se D[1, d] = F2 U dF2 , onde F2 é o subgrupo de F formado pelos quadrados. Um elemento d é dito birígido se d e -d são rígidos. O presente trabalho tem como objetivo principal obter um teorema de estrutura para o anel de Witt (das classes de equivalência de formas quadráticas) de um corpo ordenado F admitindo um elemento rígido que não é birígido e que é negativo em relação à pelo menos uma das ordens do corpo. Mais precisamente, obtemos uma decomposição do anel de Witt de F como produto de anéis de Witt de duas extensões H ¿ F e K ¿ F, ambas contidas no fecho quadrático de F. Os anéis de Witt de H e K têm estrutura mais simples que a do anel de Witt de F. Obtemos os corpos H e K construindo subgrupos Rd e Sd associados ao elemento rígido d e exigindo que valha uma propriedade de decomposição: F = Rd· Sd. O corpo H é uma henselização de F relativa a um anel de valorização (A;mA) de F tal que Rd = (1 + mA) F2 . O corpo K é pitagórico e tem espaço de ordens XK homeomorfo ao espaço X/Sd das ordens de F que contém Sd. Obtemos ainda uma condição necessária e suficiente para que ocorra a decomposição F = Rd · Sd, que depende do grupo de valores e do corpo de resíduos do anel de valorização A. / Abstract: An ordered field is an algebraic structure like the field of real numbers. However, while the field of real numbers have only one ordering, an arbitrary ordered field F may have more than one ordering, and also a infinite and uncountble number of orderings is allowed. To each element x Î F one can associate an binary quadratic form [1, x], called Pfister 1-fold form. The set of elements in F = F 0} which are represented by [1, x] is a group D[1,x], called value group of [1,x]. An element d S F is called rigid if D[1, d] = F2 U dF2, where F 2 denotes the subgroup of squares in F . An element d is called birigid if d and -d are both rigid. The main purpose of this thesis is to prove an structure theorem for Witt ring (of equivalence classes of quadratic forms) of an ordered field F with a rigid element which is not birigid and is negative in at least one ordering of F, that is, we get a decomposition of the Witt ring of F as a product of Witt rings of extensions H ¿ F and K ¿ F, both inside the quadratic closure of F. The Witt rings of H and K have a simpler structure than Witt ring of F. We get fields H and K by builting subgroups Rd and Sd associated to the rigid element d and making the addicional assumption that F = Rd·Sd holds. The field H is a henselization of F relative to a valuation ring (A;mA) of F such that Rd = (1 + mA) F2. The pythagorean field K has space of orderings XK homeomorphic to X/Sd, the space of orderings of F which contain Sd. Moreover, we settle an necessary and suficient condiction to decomposition F = Rd·Sd holds, relative to value group and residue field of valuation ring A. / Doutorado / Algebra / Doutor em Matemática
|
18 |
Arithmetic and analytical aspects of Siegel modular formsWaibel, Fabian 25 June 2020 (has links)
No description available.
|
19 |
On Shifted Convolution Sums Involving the Fourier Coefficients of Theta Functions Attached to Quadratic FormsRavindran, Hari Alangat 29 December 2014 (has links)
No description available.
|
20 |
Small zeros of quadratic congruences to a prime power modulusHakami, Ali Hafiz Mawdah January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Todd E. Cochrane / Let $m$ be a positive integer, $p$ be an odd prime, and $\mathbb{Z}_{p^m } = \mathbb{Z}/(p^m )$ be the ring of integers modulo $p^m $. Let
$$Q({\mathbf{x}}) = Q(x_1 ,x_2 ,...,x_n ) = \sum\limits_{1 \leqslant i \leqslant j \leqslant n} {a_{ij} x_i x_j } ,$$
be a quadratic form with integer coefficients. Suppose that $n$ is even and $\det A_Q \not \equiv 0\;(\bmod p)$. Set $\Delta = (( - 1)^{n/2} \det A_Q /p)$, where $( \cdot /p)$ is the Legendre symbol and $\left\| {\mathbf{x}} \right\| = \max \left| {x_i } \right|$. Let $V$ be the set of solutions the congruence
$ $Q({\mathbf{x}})\, \equiv \;0\quad (\bmod p^m ) \quad(1)$$,
contained in $\mathbb{Z}^n $ and let $B$ be any box of points in $\mathbb{Z}^n $of the type
$$B = \left\{ {{\mathbf{x}} \in \mathbb{Z}^n \left| {\,a_i \leqslant x_i < a_i + m_i ,\;\,1 \leqslant i \leqslant n} \right.} \right\},$$
where $a_i ,m_i \in \mathbb{Z},\;1 \leqslant m_i \leqslant p^m $.
In this dissertation we use the method of exponential sums to investigate how large the cardinality of the box $B$ must be in order to guarantee that there exists a solution ${\mathbf{x}}$of (1) in $ B$. In particular we will focus on cubes (all $m_i $equal) centered at the origin in order to obtain primitive solutions with $\left\| {\mathbf{x}} \right\|$ small. For $m = 2$ and $n \geqslant 4$ we obtain a primitive solution with $\left\| {\mathbf{x}} \right\| \leqslant \max \left\{ {2^5 p,2^{18} } \right\}$. For $m = 3$, $n \geqslant 6$, and $\Delta = + 1$, we get $\left\| {\mathbf{x}} \right\| \leqslant \max \left\{ {2^{2/n} p^{(3/2) + (3/n)} ,2^{(2n + 4)/(n - 2)} } \right\}$. Finally for any $m \geqslant 2$, $n \geqslant m,$ and any nonsingular quadratic form we obtain $\left\| {\mathbf{x}} \right\| \leqslant \max \{ 6^{1/n} p^{m[(1/2) + (1/n)]} ,2^{2(n + 1)/(n - 2)} 3^{2/(n - 2)} \} $.
Others results are obtained for boxes $B$ with sides of arbitrary lengths.
|
Page generated in 0.0663 seconds