• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 47
  • 27
  • 14
  • 14
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 263
  • 62
  • 42
  • 37
  • 36
  • 34
  • 29
  • 26
  • 26
  • 26
  • 25
  • 23
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Spectral Efficiency and Adjacent Channel Interference Performance Definitions and Requirements for Telemetry Applications

Feher, Kamilo, Jefferis, Robert, Law, Eugene 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Organizations such as the National Telecommunications and Information Administration (NTIA), Federal Communications Commission (FCC), International Telecommunications Union (ITU) and various commercial entities use a wide range of spectral efficiency criteria in different broadcast and wireless system applications. These criteria and related specifications have significant differences. This paper briefly reviews some common adjacent channel interference (ACI) definitions as well as issues surrounding the definition of spectral efficiency. The impact of these parameters on system bit error rate (BER) performance and closely "packed" adjacent signals is described. ACI criteria and spectral efficiency definitions considered appropriate for existing telemetry applications and deployment of new generations of spectrally efficient systems are illustrated. Specific ACI and spectral efficiency performance requirements adopted by the Department of Defense (DoD) and Advanced Range Telemetry (ARTM) project are highlighted.
72

RADIO FREQUENCY OVERVIEW OF THE HIGH EXPLOSIVE RADIO TELEMETRY PROJECT

Bracht, Roger, Dimsdle, Jeff, Rich, Dave, Smith, Frank 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / High explosive radio telemetry (HERT) is a project that is being developed jointly by Los Alamos National Laboratory and AlliedSignal FM&T. The ultimate goal is to develop a small, modular telemetry system capable of high-speed detection of explosive events, with an accuracy on the order of 10 nanoseconds. The reliable telemetry of this data, from a high-speed missile trajectory, is a very challenging opportunity. All captured data must be transmitted in less than 20 microseconds of time duration. This requires a high bits/Hertz microwave telemetry modulation code to insure transmission of the data within the limited time interval available.
73

FQPSK-O: An Improved Performance Constant Envelope Modulation Scheme for OQPSK

Lee, Tong-Fu, Wang, Shih-Ho, Liu, Chia-Liang 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / A new constant envelope modulation scheme for OQPSK, called FQPSK-O, is presented. This modulation technique is an extension of the Feher Quadrature Shift Keying (FQPSK) patented technologies, see Ref[l]. This scheme uses cubic spline interpolation to generate very smooth baseband waveforms in order to increase the spectral and power efficiency. Being a constant envelope modulation, FQPSK-O can operate with class C power amplifier without spectrum regrowth. We achieve a more compact spectrum with comparable bit error rate performance. For example, the spectrum of FQPSK-O is 25% narrower than that of GMSK with BT(b)=0.3 and FQPSK-1 with hardlimiter [2] at -40 dB attenuation point. For coherent demodulation under AWGN channel, FQPSK-O has almost the same BER performance as FQPSK-1 with hardlimiter. Both of them are better than GMSK with BT(b)=0.3 for BER < 10^-4. In Rayleigh fading channel, FQPSK-O outperforms GMSK with BT(b)=0.3 by 2 dB. FQPSK-O is an excellent scheme for wireless and satellite communications which require high spectral and power efficiency.
74

SMART DIVERSITY RECEIVERS FOR DYNAMIC, MULTIPATH, FREQUENCY SELECTIVE FADED FQPSK AND OTHER SYSTEMS

Aflatouni, Katayoun, Feher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Design, performance Test and Evaluation (T&E) of a novel smart diversity receiver, based on Feher Diversity (FD) patents over multipath, fast dynamic frequency selective fading channels is presented. A hardware simulator for construction of a frequency selective fading channel has been implemented in laboratory to resemble a telemetry aeronautical channel model, namely the two-path channel model. As an illustrative example, the block error rate (BLER) of a 1 Mb/s rate IRIG 106-00 and CCSDS standardized Feher’s patented quadrature phase shift keying (FQPSK) [1][2] with and without diversity in multipath frequency selective fading channels has been tested and evaluated. The experimental results clearly indicate significant performance improvement with the proposed diversity technique even in cases of severely distorted channels.
75

Baseband compensation principles for defects in quadrature signal conversion and processing

Van Rooyen, Gert-Jan 04 1900 (has links)
Thesis (PhD)--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: Keywords: software-defined radio, SDR, quadrature mixing, quadrature modulation, quadrature demodulation, digital compensation, software radio, direct-digital synthesis, DDS. An often-stated goal of software-defined transceiver systems is to perform digital signal conversion as close to the antenna as possible by using high-rate converters. In this dissertation, alternative design principles are proposed, and it is shown that the signal processing techniques based on these principles improve on the prior system's accuracy, while maintaining system flexibility. Firstly, it is proposed that digital compensation can be used to reverse the effects of hardware inaccuracies in the RF front-end of a software-defined radio. Novel compensation techniques are introduced that suppress the signal artefacts introduced by typical frontend hardware. The extent to which such artefacts may be suppressed, is only limited by the accuracy by which they may be measured and digitally represented. A general compensation principle is laid down, which formalises the conditions under which optimal compensation may be achieved. Secondly, it is proposed that, in the design of such RF front-ends, a clear distinction should be drawn between signal processing complexity and frequency translation. It is demonstrated that conventional SDR systems often neglect this principle. As an alternative, quadrature mixing is shown to provide a clear separation between the frequency translation and signal processing problems. However, effective use of quadrature mixing as design approach necessitates the use of accurate compensation techniques to circumvent the hardware inaccuracies typically found in such mixers. Quadrature mixers are proposed as general-purpose front-ends for software-defined radios, and quadrature modulation and demodulation techniques are presented as alternatives to existing schemes. The inherent hardware inaccuracies are analysed and simulated, and appropriate compensation techniques are derived and tested. Finally, the theory is verified with a prototype system. / AFRIKAANSE OPSOMMING: Sleutelwoorde: sagteware-gedefinieerde radio, SDR, haaksfasige menging, haaksfasige modulasie, haaksfasige demodulasie, digitale kompensasie, sagteware-radio, direk-digitale sintese, DDS. 'n Gewilde stelling is dat digitale seinomsetting in sagteware-gedefinieerde kommunikasiestelsels so na as moontlik aan die antenna moet geskied deur gebruik te maak van hoëspoed omsetters. Hierdie verhandeling stel alternatiewe ontwerpsbeginsels voor, en toon aan dat hierdie beginsels die eersgenoemde stelsel se akkuraatheid verbeter, terwyl stelselbuigsaamheid gehandhaaf word. Dit word eerstens voorgestel dat digitale kompensasie gebruik word om die effekte van hardeware-onakkuraathede in die RF-koppelvlak van sagteware-gedefinieerde radio's om te keer. Nuwe kompensasietegnieke, wat seinartefakte weens koppelvlak-onakkuraathede kan onderdruk, word aangebied. Die mate waartoe hierdie artefakte onderdruk kan word, word slegs beperk deur die akkuraatheid waarmee dit gemeet en digitaal voorgestel kan word. 'n Algemene kompensasiebeginsel word neergelê waarin die voorwaardes vir optimale kompensasie vasgelê word. Tweedens word voorgestel dat 'n duidelike onderskeid getref word tussen seinverwerkingskompleksiteit en seinverskuiwing in RF-koppelvlakke. Daar word getoon dat konvensionele SDR-stelsels dikwels nie hierdie beginsel handhaaf nie. 'n Alternatief, naamlik haaksfasige menging, word voorgehou as 'n tegniek wat duidelik onderskei tussen seinverskuiwing en seinverwerking. Akkurate kompensasietegnieke is egter nodig om effektief van sulke mengers gebruik te maak. Haaksfasige mengers word voorgestel as veeldoelige koppelvlakke vir sagteware-gedefinieerde radio's, en haaksfasige modulasie- en demodulasietegnieke word voorgestel as plaasvervangers vir bestaande tegnieke. Die inherente hardeware-onakkuraathede word geanaliseer en gesimuleer, en geskikte kompensasietegnieke word afgelei en getoets. Laastens word die teoretiese resultate met 'n praktiese prototipe bevestig.
76

Benefits to processor load for quadrature baseband versus radio frequency demodulation algorithms

Ndovi, Lusungu 12 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--Stellenbosch University, 2008. / The continued advancement and improvement of software-defined radio technology has been a key factor in furthering research into the implementation of most signal processing algorithms at baseband. Traditionally, these algorithms have been carried out at RF, but with the coming of SDR, there has been a need to shift the processing down to baseband frequencies which are more compatible with the fast developing software radio technology. The study looks at selected demodulation algorithms and investigates the possibility and benefits of carrying them out at QBB. The study ventures into the area of beamforming, multipath compensation, Doppler shift compensation and matched filter detection. The analysis is carried out using Matlab simulations at RF and QBB. The results obtained are compared, not only to evaluate the possibility but also the benefits in terms of the processing load. The results of the study showed that indeed, carrying out the selected demodulation algorithms at QBB was not only possible, but also resulted in an improvement in the processing speed brought about by the reduction in the processing load.
77

Topics in Potential Theory: Quadrature Domains, Balayage and Harmonic Measure.

Sjödin, Tomas January 2005 (has links)
<p>In this thesis, which consists of five papers (A,B,C,D,E), we are interested in questions related to quadrature domains. Among the problems studied are the possibility of changing the type of measure in a quadrature identity (from complex to real and from real signed to positive), properties of partial balayage, which in a sense can be used to generate quadrature domains, and mother bodies which are closely related to inversion of partial balayage.</p><p>These three questions are discussed in papers A,D respectively B.</p><p>The first of these questions (when trying to go from real signed to positive measures) leads to the study of approximation in the cone of positive harmonic functions. These questions are closely related to properties of the harmonic measure on the Martin boundary, and this relationship leads to the study of harmonic measures on ideal boundaries in paper E. Some other approaches to the same problem also lead to some extent to the study of properties of classical balayage in paper C.</p>
78

Adaptive methods for time domain boundary integral equations for acoustic scattering

Gläfke, Matthias January 2012 (has links)
This thesis is concerned with the study of transient scattering of acoustic waves by an obstacle in an infinite domain, where the scattered wave is represented in terms of time domain boundary layer potentials. The problem of finding the unknown solution of the scattering problem is thus reduced to the problem of finding the unknown density of the time domain boundary layer operators on the obstacle’s boundary, subject to the boundary data of the known incident wave. Using a Galerkin approach, the unknown density is replaced by a piecewise polynomial approximation, the coefficients of which can be found by solving a linear system. The entries of the system matrix of this linear system involve, for the case of a two dimensional scattering problem, integrals over four dimensional space-time manifolds. An accurate computation of these integrals is crucial for the stability of this method. Using piecewise polynomials of low order, the two temporal integrals can be evaluated analytically, leading to kernel functions for the spatial integrals with complicated domains of piecewise support. These spatial kernel functions are generalised into a class of admissible kernel functions. A quadrature scheme for the approximation of the two dimensional spatial integrals with admissible kernel functions is presented and proven to converge exponentially by using the theory of countably normed spaces. A priori error estimates for the Galerkin approximation scheme are recalled, enhanced and discussed. In particular, the scattered wave’s energy is studied as an alternative error measure. The numerical schemes are presented in such a way that allows the use of non-uniform meshes in space and time, in order to be used with adaptive methods that are based on a posteriori error indicators and which modify the computational domain according to the values of these error indicators. The theoretical analysis of these schemes demands the study of generalised mapping properties of time domain boundary layer potentials and integral operators, analogously to the well known results for elliptic problems. These mapping properties are shown for both two and three space dimensions. Using the generalised mapping properties, three types of a posteriori error estimators are adopted from the literature on elliptic problems and studied within the context of the two dimensional transient problem. Some comments on the three dimensional case are also given. Advantages and disadvantages of each of these a posteriori error estimates are discussed and compared to the a priori error estimates. The thesis concludes with the presentation of two adaptive schemes for the two dimensional scattering problem and some corresponding numerical experiments.
79

Modelos multiníveis Weibull com efeitos aleatórios / Multilevel Weibull models with random effects

Hernandez Barajas, Freddy 28 February 2013 (has links)
Os modelos multiníveis são uma classe de modelos úteis na análise de bases de dados com estrutura hierárquica. No presente trabalho propõem-se os modelos multiníveis com resposta Weibull, nos quais são considerados interceptos aleatórios na modelagem dos dois parâmetros da distribuição da variável resposta. Os modelos aqui propostos são flexíveis devido a que a distribuição dos interceptos aleatórios pode der escolhida entre uma das seguintes quatro distribuições: normal, log--gama, logística e Cauchy. Uma extensão dos modelos é apresentada na qual é possível incluir na parte sistemática dos dois parâmetros da distribuição da variável resposta interceptos e inclinações aleatórias com distribuição normal bivariada. A estimação dos parâmetros é realizada pelo método de máxima verossimilhança usando a quadratura de Gauss--Hermite para aproximar a função de verossimilhança. Um pacote em linguagem R foi desenvolvido especialmente para a estimação dos parâmetros, predição dos efeitos aleatórios e para a obtenção dos resíduos nos modelos propostos. Adicionalmente, por meio de um estudo de simulação foi avaliado o impacto nas estimativas dos parâmetros do modelo ao assumir incorretamente a distribuição dos interceptos aleatórios. / Multilevel models are a class of models useful in the analysis of datasets with hierarchical structure. In the present work we propose multilevel Weibull models in which random intercepts are considered to model the two parameters of the Weibull distribution. The proposed models are flexible due to random intercepts distribution can be chosen from one of the four following distributions: normal, log-gamma, logistics and Cauchy. An extension of the models is presented in which we can include, in the systematic part of the two parameters of the distribution, random intercepts and slopes with a bivariate normal distribution. The parameter estimation is performed by maximum likelihood method using the Gauss Hermite quadrature to approximate the likelihood function. A package in R language was especially developed to obtain parameter estimation, random effects predictions and residuals for the proposed models. Additionally, through a simulation study we investigated the misspecification random effect distribution on estimated parameter for the proposed model
80

Modelos multiníveis Weibull com efeitos aleatórios / Multilevel Weibull models with random effects

Freddy Hernandez Barajas 28 February 2013 (has links)
Os modelos multiníveis são uma classe de modelos úteis na análise de bases de dados com estrutura hierárquica. No presente trabalho propõem-se os modelos multiníveis com resposta Weibull, nos quais são considerados interceptos aleatórios na modelagem dos dois parâmetros da distribuição da variável resposta. Os modelos aqui propostos são flexíveis devido a que a distribuição dos interceptos aleatórios pode der escolhida entre uma das seguintes quatro distribuições: normal, log--gama, logística e Cauchy. Uma extensão dos modelos é apresentada na qual é possível incluir na parte sistemática dos dois parâmetros da distribuição da variável resposta interceptos e inclinações aleatórias com distribuição normal bivariada. A estimação dos parâmetros é realizada pelo método de máxima verossimilhança usando a quadratura de Gauss--Hermite para aproximar a função de verossimilhança. Um pacote em linguagem R foi desenvolvido especialmente para a estimação dos parâmetros, predição dos efeitos aleatórios e para a obtenção dos resíduos nos modelos propostos. Adicionalmente, por meio de um estudo de simulação foi avaliado o impacto nas estimativas dos parâmetros do modelo ao assumir incorretamente a distribuição dos interceptos aleatórios. / Multilevel models are a class of models useful in the analysis of datasets with hierarchical structure. In the present work we propose multilevel Weibull models in which random intercepts are considered to model the two parameters of the Weibull distribution. The proposed models are flexible due to random intercepts distribution can be chosen from one of the four following distributions: normal, log-gamma, logistics and Cauchy. An extension of the models is presented in which we can include, in the systematic part of the two parameters of the distribution, random intercepts and slopes with a bivariate normal distribution. The parameter estimation is performed by maximum likelihood method using the Gauss Hermite quadrature to approximate the likelihood function. A package in R language was especially developed to obtain parameter estimation, random effects predictions and residuals for the proposed models. Additionally, through a simulation study we investigated the misspecification random effect distribution on estimated parameter for the proposed model

Page generated in 0.0436 seconds