• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spin Diffusion Associated with a Quantum Random Walk on a One-Dimensional Lattice

Chilukuri, Raghu N. 10 October 2014 (has links)
No description available.
12

Etude théorique des marches quantiques dissipatives sur des graphes complexes / Theoretical study of dissipative quantum walk on complex graphs

Yalouz, Saad 15 October 2018 (has links)
Cette thèse théorique s'inscrit dans l'univers de l'Informatique quantique et celui du transfert d'énergie. Nous étudions le transport quantique d'un exciton utilisé dans le but de véhiculer une information quantique, ou de l'énergie, sur des graphes moléculaires complexes. Dans ce contexte, nous nous intéressons aux effets de différents environnements quantiques pouvant moduler le transport excitonique. Une première partie du manuscrit porte sur le transport d'information quantique en pré­sence d'un environnement de phonons locaux. Dans ce contexte, nous introduisons une ap­proche théorique appelée PT* permettant de traiter sur un pied d'égalité exciton et pho­nons. Cette théorie est tout d'abord appliquée au cas particulier du graphe en étoile. Par la suite, PT* est comparée à des calculs exacts menés sur une collection de graphes variés. Nous montrons ainsi que la théorie PT* possède une très grande force de prédictibilité et de multiples avantages théoriques et numériques ( durée de simulation, interprétations liées à l'intrication ... ) . Dans une deuxième partie du manuscrit, nous étudions le transport quantique d'énergie sur un graphe complexe en contact avec un système externe absorbant. Nous nous intéressons tout particulièrement à la caractérisation du phénomène d'absorption énergétique et son opti­misation (transition de superradiance). Nous mettons en évidence l'impact de la topologie du réseau sur l'évolution du processus d'absorption. Pour étendre cette étude, nous considérons ensuite la présence d'un désordre local brisant la symétrie du réseau de base. Nous montrons alors que le désordre peut influencer positivement l'évolution du processus d'absorption. / The scope of this PhD is twofold and can be integrated simultaneously in quantum infor­mation theory and energy transport. We theoretically study the excitonic quantum transport in order to transmit either quantum information or energy on complex molecular networks. In this context, we pay a special attention to the modulations that different quantum envi­ronments can generate on the excitonic transport. In a first part of the manuscript, we focus on the quantum transport of information in the presence of a local phononic environment. In this context, we introduce a theoretical approach, named PT*, treating on an equal footing exciton and phonons. Firstly, this theory is applied to a particular case : the star graph. Then, PT* is compared to exact numerical calculations realized on a collection of different graphs. In this context, we demonstrate that the PT* approach shows a very strong predictability but also several theoretical and numerical advantages (simulation duration, entanglement interpretations ... ). In a second part of the manuscript, we study the quantum transport of energy on a complex graph in contact with an external absorbing system. We focus on the optimisation of the absorption process ("superradiance transition"). We demonstrate that the topology of the considered network influences the absorption evolution. In order to extend this study, we then consider the presence of a local disorder breaking the inner symetry of the graph. In this context, we show that the disorder can benefically influence the absorption process.
13

Discrete-Time Quantum Walk - Dynamics and Applications

Madaiah, Chandrashekar 01 1900 (has links)
This dissertation presents investigations on dynamics of discrete-time quantum walk and some of its applications. Quantum walks has been exploited as an useful tool for quantum algorithms in quantum computing. Beyond quantum computational purposes, it has been used to explain and control the dynamics in various physical systems. In order to use the quantum walk to its fullest potential, it is important to know and optimize the properties purely due to quantum dynamics and in presence of noise. Various studies of its dynamics in the absence and presence of noise have been reported. We propose new approaches to optimize the dynamics, discuss symmetries and effect of noise on the quantum walk. Making use of its properties, we propose the use of quantum walk as an efficient new tool for various applications in physical systems and quantum information processing. In the first and second part of this dissertation, we discuss evolution process of the quantum walks, propose and demonstrate the optimization of discrete-time quantum walk using quantum coin operation from SU(2) group and discuss some of its properties. We investigate symmetry operations and environmental effects on dynamics of the walk on a line and an $n-$cycle highlighting the interplay between noise and topology. Using the properties and behavior of quantum walk discussed in part two, in part three we propose the application of quantum walk to realize quantum phase transition in optical lattice, that is to efficiently control and redistribute ultracold atoms in optical lattice. We also discuss the implementation scheme. Another application we consider is creation of spatial entanglement using quantum walk on a quantum many body system.
14

Discrete-Time Quantum Walk - Dynamics and Applications

Madaiah, Chandrashekar 01 1900 (has links)
This dissertation presents investigations on dynamics of discrete-time quantum walk and some of its applications. Quantum walks has been exploited as an useful tool for quantum algorithms in quantum computing. Beyond quantum computational purposes, it has been used to explain and control the dynamics in various physical systems. In order to use the quantum walk to its fullest potential, it is important to know and optimize the properties purely due to quantum dynamics and in presence of noise. Various studies of its dynamics in the absence and presence of noise have been reported. We propose new approaches to optimize the dynamics, discuss symmetries and effect of noise on the quantum walk. Making use of its properties, we propose the use of quantum walk as an efficient new tool for various applications in physical systems and quantum information processing. In the first and second part of this dissertation, we discuss evolution process of the quantum walks, propose and demonstrate the optimization of discrete-time quantum walk using quantum coin operation from SU(2) group and discuss some of its properties. We investigate symmetry operations and environmental effects on dynamics of the walk on a line and an $n-$cycle highlighting the interplay between noise and topology. Using the properties and behavior of quantum walk discussed in part two, in part three we propose the application of quantum walk to realize quantum phase transition in optical lattice, that is to efficiently control and redistribute ultracold atoms in optical lattice. We also discuss the implementation scheme. Another application we consider is creation of spatial entanglement using quantum walk on a quantum many body system.
15

New phenomena in non-equilibrium quantum physics

Kitagawa, Takuya 09 October 2013 (has links)
From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. / Physics
16

Quantum Stable Process

HUANG, SHIH TING January 2015 (has links)
It is believed that in the long time limit, the limiting behavior of the discrete-time quantum random walk will cross from quantum to classical if we take into account of the decoherence. The computer simulation has already shown that for the discrete-time one-dimensional Hadamard quantum random walk with coin decoherence such that the measurement operators on the coin space are defined by A0 = Ic √1 − p, A1 = |R > < R| √p and A2 = |L > < L > < L| √p is diffusive when 0 < p ≤ 1 and it is ballistic when P = 0. In this thesis, we are going to let p to be dynamical depending on the step t, that is, we consider p = 1/tß, ß ≥ 0 and we found that it has sub-ballistic behavior for 0 < ß < 1. Furthermore, we study not only the coin decoherence, but the total decoherence, that means the measurement operators apply on the Hilbert space H = Hp ⊗ Hc instead of the coin space only. We find that the results are both sub-ballistic for the coin and total decoherence when 0 < ß < 1. Moreover, according to the model given in [T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. A 67, 032304 (2003)], we know that if the walker has chance to hop to the second nearest neighbor lattice in one step, the long-time behavior is also sub-ballistic and it is similar to that the walker can hop to the third nearest neighbor lattice in one step. By the way, we also find that if we combine the classical part of the model given in [Jing Zhao and Peiqing Tong. One-dimensional quantum walks subject to next nearest neighbor hopping decoherence, Nanjing Normal University, preprint (2014)] with different step length, then this decoherence will also cross from quantum to classical. Finally, we define the quantum γ-stable walk and obtain the quantum γ-stable law with decoherence. By this decoherence, we can see that the limiting behavior of the quantum stable walk will also cross from quantum to classical and we shows that it spreads out faster than the classical stable walk. / Mathematics
17

Detecting quantum speedup for random walks with artificial neural networks / Att upptäcka kvantacceleration för slumpvandringar med artificiella neuronnät

Linn, Hanna January 2020 (has links)
Random walks on graphs are an essential base for crucial algorithms for solving problems, like the boolean satisfiability problem. A speedup of random walks could improve these algorithms. The quantum version of the random walk, quantum walk, is faster than random walks in specific cases, e.g., on some linear graphs. An analysis of when the quantum walk is faster than the random walk can be accomplished analytically or by simulating both the walks on the graph. The problem arises when the graphs grow in size and connectivity. There are no known general rules for what an arbitrary graph not having explicit symmetries should exhibit to promote the quantum walk. Simulations will only answer the question for one single case, and will not provide any general rules for properties the graph should have. Using artificial neural networks (ANNs) as an aid for detecting when the quantum walk is faster on average than random walk on graphs, going from an initial node to a target node, has been done before. The quantum speedup may not be more than polynomial if the initial state of the quantum walk is purely in the initial node of the graph. We investigate starting the quantum walk in various superposition states, with an additional auxiliary node, to maybe achieve a larger quantum speedup. We suggest different ways to add the auxiliary node and select one of these schemes for use in this thesis. The superposition states examined are two stabiliser states and two magic states, inspired by the Gottesman-Knill theorem. According to this theorem, starting a quantum algorithm in a magic state may give an exponential speedup, but starting in a stabilizer state cannot give an exponential speedup, given that only gates from the Clifford group are used in the algorithm, as well as measurements are performed in the Pauli basis. We show that it is possible to train an ANN to classify graphs into what quantum walk was the fastest for various initial states of the quantum walk. The ANN classifies linear graphs and random graphs better than a random guess. We also show that a convolutional neural network (CNN) with a deeper architecture than earlier proposed for the task, is better at classifying the graphs than before. Our findings pave the way for automated research in novel quantum walk-based algorithms. / Slumpvandringar på grafer är essensiella i viktiga algoritmer för att lösa olika problem, till exempel SAT, booleska uppfyllningsproblem (the satisfiability problem). Genom att göra slumpvandringar snabbare går det att förbättra dessa algoritmer. Kvantversionen av slumpvandringar, kvantvandringar, har visats vara snabbare än klassiska slumpvandringar i specifika fall, till exempel på vissa linjära grafer. Det går att analysera, analytiskt eller genom att simulera vandringarna på grafer, när kvantvandringen är snabbare än slumpvandingen. Problem uppstår dock när graferna blir större, har fler noder samt fler kanter. Det finns inga kända generella regler för vad en godtycklig graf, som inte har några explicita symmetrier, borde uppfylla för att främja kvantvandringen. Simuleringar kommer bara besvara frågan för ett enda fall. De kommer inte att ge några generella regler för vilka egenskaper grafer borde ha. Artificiella neuronnät (ANN) har tidigare används som hjälpmedel för att upptäcka när kvantvandringen är snabbare än slumpvandingen på grafer. Då jämförs tiden det tar i genomsnitt att ta sig från startnoden till slutnoden. Dock är det inte säkert att få kvantacceleration för vandringen om initialtillståndet för kvantvandringen är helt i startnoden. I det här projektet undersöker vi om det går att få en större kvantacceleration hos kvantvandringen genom att starta den i superposition med en extra nod. Vi föreslår olika sätt att lägga till den extra noden till grafen och sen väljer vi en för att använda i resen av projektet. De superpositionstillstånd som undersöks är två av stabilisatortillstånden och två magiska tillstång. Valen av dessa tillstånd är inspirerat av Gottesmann- Knill satsen. Enligt satsen så kan en algoritm som startar i ett magiskt tillstånd ha en exponetiell uppsnabbning, men att starta i någon stabilisatortillstånden inte kan ha det. Detta givet att grindarna som används i algoritmen är från Cliffordgruppen samt att alla mätningar är i Paulibasen. I projektet visar vi att det är möjligt att träna en ANN så att den kan klassificera grafer utifrån vilken kvantvandring, med olika initialtillstånd, som var snabbast. Artificiella neuronnätet kan klassificera linjära grafer och slumpmässiga grafer bättre än slumpen. Vi visar också att faltningsnätverk med en djupare arkitektur än tidigare föreslaget för uppgiften är bättre på att klassificera grafer än innan. Våra resultat banar vägen för en automatiserad forskning i nya kvantvandringsbaserade algoritmer.
18

Quantum Algorithmic Engineering with Photonic Integrated Circuits

Kallol, Roy January 2013 (has links) (PDF)
Integrated quantum photonics show monolithic waveguide chips to be a promising platform for realizing the next generation of quantum optical circuits. This work proposes the implementation of quantum page Rank algorithm on a photonic waveguide lattice. Our contributions are as follows: Continuous-time quantum stochastic walk(QSW)-an alternate paradigm of quantum computing, is a hybrid quantum walk that incorporates both unitary and non-unitary effects. We propose the use of QSW which necessitates the hopping of the quantum crawler on a directed graph, for the quantum page Rank problem. We propose the implementation of quantum page Rank on a photonic waveguide lattice, where we allow the density matrix to evolve according to the Lindblad-Kossakowski master equation, the diagonal of which gives the quantum page Rank. We have also shown the use of the metric of positional Kolmogorov Complexity as an efficient tool for determining whether or not the quantum channel has been compromised. We appositionally encode multi-photon decoy pulses within the stream of single photon pulses. This positional encoding is chosen in such a way as to have low Kolmogorov complexity. The PNS attack on the multi-photon decoy pulses causes a dip in the ratio of the transmittance of the decoy pulses to the signal pulses in the conventional analysis.

Page generated in 0.0861 seconds