• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 227
  • 66
  • 27
  • 10
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 399
  • 399
  • 90
  • 80
  • 63
  • 60
  • 59
  • 48
  • 47
  • 46
  • 41
  • 41
  • 40
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Synthesis and development of compounds for nonlinear absorption of light

Kindahl, Tomas January 2012 (has links)
High-intensity light — for instance that from a laser — can be destructive, not only to the human eye, but also to equipment such as imaging sensors and optical communication devices. Therefore, effective protection against such light is desirable. A protection device should ideally have high transmission to non-damaging light, and should also be fast-acting in order to effectively stop high-intensity light. In working towards a protection device, there is a need to conduct fundamental research in order to understand the processes involved. One of the photophysical processes of special interest in the field of optical power limiting (OPL) is reverse saturable absorption, where a compound in an excited state absorbs light more strongly than it does in its ground state. In this work, several novel organoplatinum compounds for OPL, rationally designed to have a strong reverse saturable absorption, have been synthesized. The compounds have been analyzed using linear and nonlinear absorption spectroscopy, luminescence spectroscopy, and quantum chemistry calculations to gain further knowledge regarding their photophysical properties. In addition to this fundamental research, the absorption capabilities of some of these compounds indicate that they can be used for OPL applications. Consequently, compounds from these studies have been incorporated into a sol–gel glass that could be used in optical systems. / <p>Finansiellt stöd från Kempestiftelsen.</p>
162

Studies on Growth of SiC and BN : from Theory and Experiments

Olander, Jenny January 2003 (has links)
Smaller cellular telephones and more energy-efficient windows are just two examples of technological advances which call for new materials. Materials chemists seek to develop new materials, both out of pure curiosity to see which combination of elements and structures can be obtained and in efforts to produce materials, with specific properties. The starting materials (in solid, liquid or gaseous form) can then be combined and prepared in various ways. A chemical method that is gaining more attention for thin-film growth is Atomic Layer Deposition (ALD). This is a sophisticated type of vapor deposition in which the precursor gases are introduced separately into the reaction chamber. Silicon carbide (SiC) and cubic boron nitride (c-BN) are extremely hard diamond-like materials, both with a high potential for application within the modern microelectronics and tool industry. Hexagonal boron nitride (h-BN), with its graphite-like layered structure, is a promising ceramics material. Deposition of thin SiC and BN films from gaseous precursors has been studied by theoretical and experimental methods. The chemical composition and atomic arrangement of a growing surface is important for vapor growth. The surface may be terminated (e.g., by hydrogen atoms) and adopt various geometrical structures. Reconstruction of unterminated SiC(0001) surfaces, as well as H abstraction from the corresponding H-terminated surfaces, were studied using quantum mechanical calculations. Elementary reactions for vapor growth of SiC and BN, and in situ incorporation of dopant and contaminant species into these surfaces were also investigated theoretically. Moreover, thin films of BN were deposited by means of laser-assisted ALD. The general goal has been to predict and/or explain experimental results by investigating growth mechanisms.
163

Challenges in Enzyme Catalysis - Photosystem II and Orotidine Decarboxylase : A Density Functional Theory Treatment

Lundberg, Marcus January 2005 (has links)
Possibly the most fascinating biochemical mechanism remaining to be solved is the formation of oxygen from water in photosystem II. This is a critical part of the photosynthetic reaction that makes solar energy accessible to living organisms. The present thesis uses quantum chemistry, more specifically the density functional B3LYP, to investigate a mechanism where an oxyl radical bound to manganese is the active species in O-O bond formation. Benchmark calculations on manganese systems confirm that B3LYP can be expected to give accurate results. The effect of the self-interaction error is shown to be limited. Studies of synthetic manganese complexes support the idea of a radical mechanism. A manganese complex with an oxyl radical is active in oxygen formation while manganese-oxo complexes remain inactive. Formation of the O-O bond requires a spin transition but there should be no effect on the rate. Spin transitions are also required in many short-range electron-transfer reactions. Investigations of the superproficient enzyme orotidine decarboxylase support a mechanism that involves an invariant network of charged amino acids, acting together with at least two mobile water molecules.
164

Time-dependent molecular properties in the optical and x-ray regions

Ekström, Ulf January 2007 (has links)
Time-dependent molecular properties are important for the experimental characterization of molecular materials. We show how these properties can be calculated, for optical and x-ray frequencies, using novel quantum chemical methods. For xray absorption there are important relativistic effects appearing, due to the high velocity electrons near the atomic nuclei. These effects are treated rigorously within the four-component static exchange approximation. We also show how electron correlation can be taken into account in the calculation of x-ray absorption spectra, in time-dependent density functional theory based on the complex polarization propagator approach. The methods developed have been applied to systems of experimental interest|molecules in the gas phase and adsorbed on metal surfaces. The effects of molecular vibrations have been take into account both within and beyond the harmonic approximation.
165

Quantum Chemistry for Large Systems

Rudberg, Elias January 2007 (has links)
This thesis deals with quantum chemistry methods for large systems. In particular, the thesis focuses on the efficient construction of the Coulomb and exchange matrices which are important parts of the Fock matrix in Hartree-Fock calculations. Density matrix purification, which is a method used to construct the density matrix for a given Fock matrix, is also discussed. The methods described are not only applicable in the Hartree-Fock case, but also in Kohn-Sham Density Functional Theory calculations, where the Coulomb and exchange matrices are parts of the Kohn-Sham matrix. Screening techniques for reducing the computational complexity of both Coulomb and exchange computations are discussed, including the fast multipole method, used for efficient computation of the Coulomb matrix. The thesis also discusses how sparsity in the matrices occurring in Hartree-Fock and Kohn-Sham Density Functional Theory calculations can be used to achieve more efficient storage of matrices as well as more efficient operations on them. / QC 20100817
166

Four-component DFT calculations of phosphorescence parameters / Fyrkomponents DFT-beräkningar av fosforescens-parametrar

Lövgren, Robin January 2009 (has links)
Oscillator strengths and transition energies are calculated for several mono-substitutes of benzene and naphthalene molecules. The substituents investigated are chlorine, bromine and iodine. Calculations for these molecules are presented, at the Hartree-Fock and DFT level of theory. The functional used in DFT is CAM-B3LYP.
167

Advances in the density matrix renormalization group method for use in quantum chemistry

Zgid, Dominika January 2008 (has links)
Despite the success of modern quantum chemistry in predicting properties of organic molecules, the treatment of inorganic systems, which have many close lying states, remains out of quantitative reach for current methods. To treat non-dynamic correlation, we take advantage of the density matrix renormalization group (DMRG) method that has become very successful in the field of solid state physics. We present a detailed study of the DMRG method, and we pay special attention to the evolution of the understanding behind the mathematical structure of the DMRG wave function. Our primary goal is to develop a density matrix renormalization group self--consistent--field (DMRG-SCF) approach, analogous to the complete active space self--consistent field (CASSCF) method, but dealing with large active spaces that are too demanding for the full configuration interaction (FCI) method. As a first step towards such a DMRG-SCF procedure, we present a spin-adapted DMRG algorithm designed to target spin- and spatial-symmetry states that are hard to obtain while using an unrestricted algorithm. Our next step is a modification of the DMRG algorithm to obtain decreasing energy at every step during the sweep. This monotonically convergent DMRG scheme lets us obtain the two-body density matrix as a by--product of the existing procedure without any additional cost in storage. Additionally, the two-body density matrix produced at convergence using this scheme is free from the N-representability problem that is present when the two--body density matrix is produced with the two-site DMRG scheme without additional storage cost. Finally, taking advantage of the modifications developed herein, we present results obtained from our DMRG-SCF method. Lastly, we discuss possible ways of incorporating dynamical correlation into the DMRG scheme, in order to obtain a modern multireference approach.
168

Geometry and Electronic Structure of Doped Clusters via the Coalescence Kick Method

Averkiev, Boris 01 May 2009 (has links)
Developing chemical bonding models in clusters is one of the most challenging tasks of modern theoretical chemistry. There are two reasons for this. The first one is that clusters are relatively new objects in chemistry and have been extensively studied since the middle of the 20th century. The second reason is that clusters require high-level quantum-chemical calculations; while for many classical molecules their geometry and properties can be reasonably predicted by simpler methods. The aim of this dissertation was to study doped clusters and explain their chemical bonding. The research was focused on three classes of compounds: aluminum clusters doped with one nitrogen atom, planar compounds with hypercoordinate central atom, partially mixed carbon-boron clusters, and transition metal clusters. The geometry of the two latter classes of compounds was explained using the concept of aromaticity, previously developed in our group. Also the Coalescence Kick Method for finding global minima structure and low-lying isomers was implemented, tested, and applied to the considered cluster systems. Tests showed that the Kick Method works faster than other methods and provides reliable results. It finds global minima even for such large clusters as B17- and B19- in reasonable time.
169

Advances in the density matrix renormalization group method for use in quantum chemistry

Zgid, Dominika January 2008 (has links)
Despite the success of modern quantum chemistry in predicting properties of organic molecules, the treatment of inorganic systems, which have many close lying states, remains out of quantitative reach for current methods. To treat non-dynamic correlation, we take advantage of the density matrix renormalization group (DMRG) method that has become very successful in the field of solid state physics. We present a detailed study of the DMRG method, and we pay special attention to the evolution of the understanding behind the mathematical structure of the DMRG wave function. Our primary goal is to develop a density matrix renormalization group self--consistent--field (DMRG-SCF) approach, analogous to the complete active space self--consistent field (CASSCF) method, but dealing with large active spaces that are too demanding for the full configuration interaction (FCI) method. As a first step towards such a DMRG-SCF procedure, we present a spin-adapted DMRG algorithm designed to target spin- and spatial-symmetry states that are hard to obtain while using an unrestricted algorithm. Our next step is a modification of the DMRG algorithm to obtain decreasing energy at every step during the sweep. This monotonically convergent DMRG scheme lets us obtain the two-body density matrix as a by--product of the existing procedure without any additional cost in storage. Additionally, the two-body density matrix produced at convergence using this scheme is free from the N-representability problem that is present when the two--body density matrix is produced with the two-site DMRG scheme without additional storage cost. Finally, taking advantage of the modifications developed herein, we present results obtained from our DMRG-SCF method. Lastly, we discuss possible ways of incorporating dynamical correlation into the DMRG scheme, in order to obtain a modern multireference approach.
170

Quantum-Chemical Investigations of Second- and Third-Order Nonlinear Optical Chromophores for Electro-Optic and All-Optical Switching Applications

Agnew, Amalia 07 July 2006 (has links)
The past decades have witnessed the development of new materials with large nonlinear optical properties, which have made them attractive candidats for a broad spectrum of breakthrough applications in the electro-optic and photonic fields (e.g., telecommunication and computing). A deeper understanding of the relationship between, on the one hand, the chemical structure and, on the other hand, the electronic and (linear and nonlinear) optical properties has proven useful for the rational design of new efficient materials. Reaching such an understanding has attracted major interest in the scientific community worldwide in both academia and industry. Therefore, the development of new efficient NLO chromophores and materials along with commercial devices of high quality is helped via the establishment of multidisciplinary research teams combining: (i) the theoretical modeling using quantum-chemical computational calculations; (ii) the organic synthesis; (iii) the optical characterization; and (iv) the device fabrication. In this dissertation, quantum-chemistry is used to evaluate the second- and third-order NLO properties of series of new chromophores and take advantage of a feedback loop with the experimental team to understand the structure-property relationships.

Page generated in 0.0516 seconds