• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 29
  • 15
  • 10
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 305
  • 305
  • 85
  • 67
  • 50
  • 46
  • 37
  • 35
  • 28
  • 28
  • 24
  • 23
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Caracterização da evolução adiabática em cadeias de spin / Characterization of adiabatic evolution in spin chains

Julián Andrés Vargas Grajales 27 March 2018 (has links)
A computação quântica adiabática tem sua pedra angular no teorema adiabático, cuja eficiência está relacionada tradicionalmente à proporção da variação temporal do Hamiltoniano que descreve o sistema e o gap mínimo entre o estado fundamental e o primeiro excitado. Normalmente, esse gap tende a diminuir quando aumenta o número de recursos (bit quântico: qubit) de um processador quântico, exigindo dessa maneira variações lentas do Hamiltoniano para assim garantir uma dinâmica adiabática. Entre os candidatos para a sua implementação física, estão os qubits baseados em circuitos supercondutores os quais têm um grande potencial, por causa de seu alto controle e escalabilidade promissora. No entanto, quando esses qubits são implementados, eles têm uma fonte intrínseca de ruído devido a erros de fabricação, que não podem ser desprezados. Por isso, nesta tese nós estudamos como os efeitos causados pelas flutuações dos parâmetros físicos do qubit afetam o comportamento da fidelidade da computação, realizando com esse propósito a simulação da dinâmica de cadeias de spin pequenas desordenadas. A partir do análise exaustivo desse estúdio foi possível propor uma estratégia que permite aumentar a fidelidade considerando um sistema ruidoso. Por outro lado, motivados pelo interesse de obter critérios suficientes e necessários para satisfazer uma computação quântica adiabática e pelo fato que ainda não existe uma condição de adiabaticidade geral apesar de existir inúmeras propostas, nós apresentamos um novo critério que manifesta suficiência para sistemas mais gerais e finalmente apresentamos evidências de que tal condição seria um quantificador consistente. / Adiabatic quantum computation has its cornerstone in the adiabatic theorem, whose efficiency is traditionally related to the ratio of the Hamiltonian temporal variation that describes the system and the minimum gap between the ground state and the first excited state. Usually, this gap tends to decrease when the number of quantum resources (quantum bit: qubit) of a quantum processor increases, thus it requires slow variations of the Hamiltonian to ensure an adiabatic dynamic. Among the candidates for its physical implementation are the qubits superconducting circuit-based which have great potential because of their high control and promising scalability. However, when these qubits are implemented, they have an intrinsic source of noise due to manufacturing errors that can not be despised. Therefore, in this thesis we study how the effects caused by the fluctuations of the physical parameters of the qubit affect the behavior of the fidelity of the computation, accomplishing with this purpose the simulation of the dynamics of small disordered spin chains. From the exhaustive analysis of this studio, it was possible to propose a strategy that allows to increase the fidelity considering a noisy system. On the other hand, motivated by the interest of obtaining sufficient and necessary criteria to satisfy an adiabatic quantum computation and the fact that there is still no general adiabaticity condition despite there being numerous proposals, we present a new criterion that manifests sufficiency for more general systems and we finally presented evidence that such a condition would be a consistent quantifier.
162

Algebra geometrica e o algoritmo de Grover / Algebra and the Grover's algorithm

Alves, Rafael Santos de Oliveira, 1982- 29 July 2008 (has links)
Orientador: Carlile Campos Lavor / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T07:27:34Z (GMT). No. of bitstreams: 1 Alves_RafaelSantosdeOliveira_M.pdf: 2108746 bytes, checksum: 26f9217f1127ef34f9a7ae1692c995b8 (MD5) Previous issue date: 2008 / Resumo: O Algoritmo de Grover é um algoritmo quântico de busca em um conjunto desordenado. Com o uso de propriedades da mecânica quântica, ele apresenta um ganho quadrático em relação a um algoritmo clássico. Neste trabalho, apresentamos uma outra visão deste algoritmo, através da Álgebra Geométrica, motivados pela interpretação geométrica dos operadores, e verificamos que é possível escrevê-lo com uma nova linguagem, e ainda apresentar uma expressão mais simples para o operador de Grover (G) além de expressões gerais para estados resultantes de aplicações sucessivas deste operador / Abstract: Grover¿s algorithm is a quantum algorithm for searching in unstructured databases. Due to the properties of quantum mechanics, it provides a quadratic speedup over their classical counterparts. Using the Geometric Algebra, we present a new way to understand and simplify the operators of Grover¿s algorithm / Mestrado / Computação Quantica / Mestre em Matemática Aplicada
163

Computação quântica e teoria de computação / Quantum computing and theoretical computer science

Grilo, Alex Bredariol, 1987- 04 November 2014 (has links)
Orientador: Arnaldo Vieira Moura / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-25T06:09:05Z (GMT). No. of bitstreams: 1 Grilo_AlexBredariol_M.pdf: 1279418 bytes, checksum: 80f0b105ffcfb57f6e43c530b32cb7a9 (MD5) Previous issue date: 2014 / Resumo: A Computação Quântica é um tópico relativamente recente e pouco conhecido, principalmente no meio da Computação. Seu estudo surgiu na tentativa de físicos simularem sistemas regidos pela Mecânica Quântica por computadores clássicos, o que se conjecturou inviável. Portanto, um novo modelo computacional que utiliza a estrutura quântica da matéria para computar foi teorizado para suprir estas deficiências. Este trabalho tem como objetivo principal estudar as influências da Computação Quântica na Teoria da Computação. Para atingir tal objetivo, primeiramente são expostos os conhecimentos básicos da Mecânica Quântica através de uma linguagem voltada para Teóricos de Computação sem conhecimento prévio na área, de forma a remover a barreira inicial sobre o tema. Em seguida, serão apresentadas inovações na área da Teoria de Computação oriundas da Computação Quântica. Começaremos com os principais Algoritmos Quânticos desenvolvidos até hoje, que foram os primeiros passos para demonstrar a possível superioridade computacional do novo modelo. Dentre estes algoritmos, apresentaremos o famoso Algoritmo de Shor, que fatora números em tempo polinomial. Adicionalmente, neste trabalho foram estudados tópicos mais avançados e atuais em Computabilidade e Complexidade Quânticas. Sobre Autômatos Quânticos, foram estudados aspectos de um modelo que mistura estados clássicos e quânticos, focando na comparação do poder computacional em relação aos Autômatos Finitos Clássicos. Do ponto de vista de Classes de Complexidade, será abordada a questão se em linguagens da classe QMA, o análogo quântico da classe NP, consegue-se atingir probabilidade de erro nulo na aceitação de instâncias positivas / Abstract: Quantum Computing is a relatively new area and it is not well known, mainly among Computer Scientists. It has emerged while physicists tried to simulate Quantum Systems with classical computers efficiently, which has been conjectured impossible. Then, a new computational model that uses the quantum structure of matter to perform computations has been theorized in order to perform these operations. We intend in this work to study the influences of Quantum Computing in Theoretical Computer Science. In order to achieve this goal, we start by presenting the basics of Quantum Computing to Theoretical Computer Science readers with no previous knowledge in this area, removing any initial barriers for a clean understanding of the topic. We will then follow by showing innovations in Theoretical Computer Science introduced by Quantum Computation. We start by showing the main Quantum Algorithms, that exemplify advantages of the new computational model. Among these algorithms, we will present the Shor Algorithm that factors numbers in polynomial time. We follow with more advanced topics in Quantum Computability and Complexity. We study Quantum Finite Automata Models that work with quantum and classical states, focusing on comparing their computational power with Deterministic Finite Automata. In Complexity Theory, we study the question if for languages in QMA, the quantum analogue of NP, zero probability error can be achieved in yes-instances / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
164

Non-local electrodynamics of superconducting wires: implications for flux noise and inductance

Senarath Yapa Arachchige, Pramodh Viduranga 22 December 2017 (has links)
The simplest model for superconductor electrodynamics are the London equations, which treats the impact of electromagnetic fields on the current density as a localized phenomenon. However, the charge carriers of superconductivity are quantum mechanical objects, and their wavefunctions are delocalized within the superconductor, leading to non-local effects. The Pippard equation is the generalization of London electrodynamics which incorporates this intrinsic non-locality through the introduction of a new superconducting characteristic length, \xi_0, called the Pippard coherence length. When building nano-scale superconducting devices, the inclusion of the coherence length into electrodynamics calculations becomes paramount. In this thesis, we provide numerical calculations of various electrodynamic quantities of interest in the non-local regime, and discuss their implications for building superconducting devices. We place special emphasis on Superconducting QUantum Inteference Devices (SQUIDs), and their usage as flux quantum bits (qubits) in quantum computation. One of the main limitations of these flux qubits is the presence of intrinsic flux noise, which leads to decoherence of the qubits. Although the origin of this flux noise is not known, there is evidence that it is related to spin impurities within the superconducting material. We present calculations which show that the flux noise in the non-local regime is signi cantly different from the local case. We also demonstrate that non-local electrodynamics greatly affect the self-inductance of the qubit. / Graduate
165

Investigations Of Coupled Spins In NMR : Selective Excitation, Cross Correlations And Quantum Computing

Dorai, Kavita 05 1900 (has links) (PDF)
No description available.
166

New f-block and mixed d,f-block molecular nanomagnets

Moreno Pineda, Eufemio January 2014 (has links)
Molecular Nanomagnets have been proposed as plausible candidates in a variety of futuristic applications. Thorough understanding of the magnetic properties of these systems is therefore necessary to develop devices that include such units. The aim of this thesis is to synthesise and structurally and magnetically characterise a range of systems that could be used as elementary units in three proposed applications such as: data storage devices, magnetic refrigerants and qubits for quantum computing. A series of mixed 3d/4f metal complexes were synthesised through solvothermal reactions and characterised by X-ray single crystal diffraction and SQUID magnetometry. Through indirect methods it was possible to obtain high magnetic entropy change for some systems. It was also possible to obtain some insight into the magnetic interactions within the systems through modelling the magnetic data. The role of the 4f-4f and 3d-4f interactions in two sets of molecules is also described. The first study is in an asymmetric dysprosium dimer, where through a range of experimental techniques and advanced theoretical methods, such ab-initio calculations we are able to explain the role of the intramolecular interactions and their effect on the SMM properties of this system. Similarly, insight into the role of the 3d-4f interactions is achieved through the observation of the magnetic behaviour of a family of 27 tetranuclear systems, though SQUID data and ab-initio calculations. Finally, chemical functionalization of a well-proposed qubits, namely {Cr7Ni} and subsequent reaction with a redox active metal ion, CoII/III, two {Cr7Ni} systems are linked. The magnitude of the exchange interaction between the {Cr7Ni}-CoII-{Cr7Ni} was determined through Electron Paramagnetic Resonance. Furthermore, by chemical oxidation/reduction of the cobalt between paramagnetic and diamagneticstates, i.e. CoII and CoIII respectively, we demonstrate that the interaction can be switched ON/OFF. This characteristic makes of these systems candidates to function as a SWAP gate.
167

Matched instances of Quantum Sat (QSat): Product state solutions of restrictions

Goerdt, Andreas 18 January 2019 (has links)
Matched instances of the quantum satisfiability problem have an interesting property: They always have a product state solution. However, it is not clear how to find such a solution efficiently. Recenttly some progress on this question has been made by considering restricted instances of this problem. In this note we consider a different restriction of the problem which turns out to be solvable by techniques of linear algebra.
168

Band Theory and Beyond: Applications of Quantum Algorithms for Quantum Chemistry

Sherbert, Kyle Matthew 05 1900 (has links)
In the past two decades, myriad algorithms to elucidate the characteristics and dynamics of molecular systems have been developed for quantum computers. In this dissertation, we explore how these algorithms can be adapted to other fields, both to closely related subjects such as materials science, and more surprising subjects such as information theory. Special emphasis is placed on the Variational Quantum Eigensolver algorithm adapted to solve band structures of a periodic system; three distinct implementations are developed, each with its own advantages and disadvantages. We also see how unitary quantum circuits designed to model individual electron excitations within a molecule can be modified to prepare a quantum states strictly orthogonal to a space of known states, an important component to solve problems in thermodynamics and spectroscopy. Finally, we see how the core behavior in several quantum algorithms originally developed for quantum chemistry can be adapted to implement compressive sensing, a protocol in information theory for extrapolating large amounts of information from relatively few measurements. This body of work demonstrates that quantum algorithms developed to study molecules have immense interdisciplinary uses in fields as varied as materials science and information theory.
169

Finite-size scaling in quantum annealing with decoherence

Weinberg, Phillip E. 13 November 2020 (has links)
Quantum annealing represents an essential milestone towards the goal of adiabatic quantum computing. In quantum annealing, the computation involves finding the ground state of a classical Ising-like Hamiltonian realized as interactions between qubits. Quantum fluctuations are introduced to allow the wavefunction of the qubits to explore the energy landscape, the hope being that the wavefunction finds a minimum energy configuration and possibly giving the result of the computation. While quantum annealing likely may not be as powerful as adiabatic quantum computing, it is possible that it may be better at optimization compared to analogous classical algorithms. In physical realizations of quantum annealing, there are still questions as to the role of quantum fluctuations in the operation of a device given the short coherence times of the individual qubits. These questions have consistently posed a serious theoretical challenge making it difficult to verify experimental results. Here we simplify the problem by considering a system of qubits with ferromagnetic interactions, modeling the decoherence effects as classical noise in the transverse-field of each qubit. We compare the calculations to data collected from a system of manufactured qubits produced by D-wave Systems by performing a finite-size scaling analysis that captures the competition between quantum fluctuations of the transverse-field and bit-flip errors from the noise. We argue that on time-scales larger than the single-qubit decoherence time, the device produces the expected quantum fluctuations for the many-body system. Using this finite-size scaling, one can diagnose sources of noise in the system. Hopefully, in the near future, these devices will not only be realizing coherent quantum annealing but will likely be useful as another example of synthetic quantum matter.
170

Practical Quantum Simulation on Noisy Superconducting Quantum Computers

Ferris, Kaelyn J. 05 June 2023 (has links)
No description available.

Page generated in 0.063 seconds