• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 31
  • 28
  • 27
  • 23
  • 17
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 344
  • 344
  • 68
  • 62
  • 37
  • 34
  • 31
  • 31
  • 26
  • 26
  • 25
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Photonic crystals as functional mirrors for semiconductor lasers

Moore, Stephen A. January 2008 (has links)
In recent years, interest has grown in the research fields of semiconductor lasers and photonic crystals. This thesis looks at integrating photonic crystals into existing semiconductor laser technology to act as functional laser mirrors. The majority of the research is conducted on a quantum-dot material system. The surface recombination velocity of a GaAs based quantum-dot material is shown to be a similar value to InP material. This allows the creation of fine photonic crystal structures in the laser design without high threshold current penalties. The spectral reflection properties of a one dimensional photonic crystal is studied and found to be an unsuitable candidate for a stand-alone laser mirror, due to its low reflectivity. A two-dimensional photonic crystal W3 defect waveguide is successfully integrated as a quantum-dot laser mirror. Single fundamental mode output is achieved with a typically multi-mode 20 μm wide laser mesa, highlighting the mode selective property of the mirror. A similar two-dimensional mirror is studied for its potential as a dispersion compensating mirror for mode-locked lasers. Initial theoretical analysis shows pulse compression for a suitably designed mirror. Experimental continuous- wave results for the same mirror structure demonstrate the tuning of mirror reflectivity with photonic crystal hole radius. A hybrid silicon-organic photonic crystal laser is demonstrated with output in the visible spectrum. This design is a new type of silicon emitter.
122

Improved algorithms and hardware designs for division by convergence

Kong, Inwook 21 June 2010 (has links)
This dissertation focuses on improving the division-by-convergence algorithm. While the division by convergence algorithm has many advantages, it has some drawbacks, such as a need for extra bits in the multiplier and a large ROM table for the initial approximation. To mitigate these problems, two new methods are proposed here. In addition, the research scope is extended to seek an efficient architecture for implementing a divider with Quantum-dot Cellular Automata (QCA), an emerging technology. For the first proposed approach, a new rounding method to reduce the required precision of the multiplier for division by convergence is presented. It allows twice the error tolerance of conventional methods and inclusive error bounds. The proposed method further reduces the required precision of the multiplier by considering the asymmetric error bounds of Goldschmidt dividers. The second proposed approach is a method to increase the speed of convergence for Goldschmidt division using simple logic circuits. The proposed method achieves nearly cubic convergence. It reduces the logic complexity and delay by using an approximate squarer with a simple logic implementation and a redundant binary Booth recoder. Finally, a new architecture for division-by-convergence in QCA is proposed. State machines for QCA often have synchronization problems due to the long wire delays. To resolve this problem, a data tag method is proposed. It also increases the throughput significantly since multiple division computations can be performed in a time skewed manner using one iterative divider. / text
123

Persistent Currents and Quantum Critical Phenomena in Mesoscopic Physics

Zelyak, Oleksandr 01 January 2009 (has links)
In this thesis, we study persistent currents and quantum critical phenomena in the systems of mesoscopic physics. As an introduction in Chapter 1 we familiarize the reader with the area of mesoscopic physics. We explain how mesoscopic systems are different from quantum systems of single atoms and molecules and bulk systems with an Avogadro number of elements. We also describe some important mesoscopic phenomena. One of the mathematical tools that we extensively use in our studies is Random Matrix Theorty. This theory is not a part of standard physics courses and for educational purposes we provide the basics of Random Matrix Theory in Chapter 2. In Chapter 3 we study the persistent current of noninteracting electrons in quantum billiards. We consider simply connected chaotic Robnik-Berry quantum billiard and its annular analog. The electrons move in the presence of a point-like magnetic flux at the center of the billiard. For the simply connected billiard, we find a large diamagnetic contribution to the persistent current at small flux, which is independent of the flux and is proportional to the number of electrons (or equivalently the density since we keep the area fixed). The size of this diamagnetic contribution is much larger than the previously studied mesoscopic fluctuations in the persistent current in the simply connected billiard. This behavior of persistent current can ultimately be traced to the response of the angular-momentum l = 0 levels (neglected in semiclassical expansions) on the unit disk to a point-like flux at its center. We observe the same behavior for the annular billiard when the inner radius is much smaller than the outer one. We also find that the usual fluctuating persistent current and Anderson-like localization due to boundary scattering are seen when the annulus tends to a one-dimensional ring. We explore the conditions for the observability of this phenomenon. In Chapter 4 we study quantum critical phenomena in a system of two coupled quantum dots connected by a hopping bridge. Both the dots and connecting region are assumed to be in universal Random Matrix crossover regimes between Gaussian orthogonal and unitary ensembles (defined in Chapter 2). We exploit a diagrammatic approach appropriate for energy separations much larger than the level spacing, to obtain the ensemble-averaged one- and two-particle Greens functions. We find that two main components of the twoparticle Green’s function (diffuson and Cooperon) can be described by separate scaling functions. We then use this information to investigate a model interacting system in which one dot has an attractive s-wave reduced Bardeen-Cooper-Schrieffer interaction, while the other is noninteracting but subject to an orbital magnetic field. We find that the critical temperature TC of the mean-field transition into the superconducting state in the first dot is non-monotonic in the flux through the second dot in a certain regime of interdot coupling. Likewise, the fluctuation magnetization above the critical temperature is also non-monotonic in this regime, can be either diamagnetic or paramagnetic, and can be deduced from the Cooperon scaling function. We end this thesis with conclusion in Chapter 5.
124

Experimental study of 2D hole systems : coherent transport in quantum dots and magnetothermopower

Faniel, Sébastien 06 December 2007 (has links)
Two-dimensional (2D) carrier systems built from semiconductor heterostructures have been at the center of a wide variety of experimental and theoretical research over the past decades. The quality improvement of GaAs/AlGaAs systems has allowed the observation of several peculiar ground states stabilized by the subtle interplay between carrier-carrier interaction, disorder and magnetic field. More recently, 2D systems in semiconductor heterostructures have also been used as a prime substrate for further confinement of the carriers to mesoscopic systems of major interest for the emerging fields of quantum computing and spintronics. This thesis addresses both magnetotransport measurements in hole open quantum dots (QDs) and thermopower studies of 2D holes in (311)A GaAs heterostructures. In the first part of this thesis, we describe the fabrication process for hole GaAs open QDs and investigate their magnetotransport properties at very low temperature T. Below 500 mK, the magnetoconductance of the open QDs exhibits clear signatures of coherent transport, namely magnetoconductance fluctuations and weak anti-localization. From these effects, we extract a T dependence for the dephasing time, together with an upper limit for the spin-orbit scattering time using the random matrix theory. Both the dephasing time and the spin-orbit scattering time are found to be much smaller than for electrons in similar systems. In the second part of this work, we report low-T thermopower measurements in the parallel magnetic field-induced metal-insulator transition (MIT) of 2D GaAs hole heterojunctions with different interface-dependent mobilities. When the magnetic field is increased, the diffusion thermopower decreases across the MIT. The reduction of the diffusion thermopower is more pronounced for the lower mobility sample where it reverses its sign. This behaviour indicates that the system does not undergo any ground state modification through the MIT but rather that the parallel magnetic field induces a dramatic change of the dominant hole scattering mechanisms. Finally, the last part of this thesis is devoted to the thermopower study of the insulating phase (IP) observed in 2D GaAs bilayer hole systems around the total Landau level filling factor n = 1. Our measurements show that the diffusion thermopower diverges with decreasing T in the IP. This divergence of the diffusion thermopower at low T indicates the opening of an energy gap in the system's ground state and suggests the formation of a pinned bilayer hole Wigner crystal around n = 1.
125

Advanced optoelectronic characterisation of solar cells

Willis, Shawn M. January 2011 (has links)
Optoelectronic characterisation techniques are assessed in their application to three solar cell systems. Charge injection barriers are found in PbS/ZnO colloidal quantum dot solar cells through the use of temperature dependent current-voltage and capacitance-voltage measurements. The injection barriers are shown to complicate the Mott-Schottky capacitance analysis which determines built-in bias and doping density. A model that incorporates depletion capacitance and a constant capacitance arising from the injection barriers is given to explain the Mott-Schottky plots. The junction mechanism at the PbS/ZnO interface is found to transition from excitonic to p-n behaviour based on the amount of UV photodoping the cell has received. External quantum efficiency analysis at different photodoping times reveals a growing charge collection region within the material, demonstrating the shift to p-n behaviour. This is further supported by the observance of depletion capacitance behaviour after, but not before, UV photodoping. Defects within GaAs cells containing InAs quantum dots are found to enhance the sub-bandgap performance of the cell using external quantum efficiency analysis. This is verified by illuminated current-voltage analysis using a 1000 nm high pass optical filter to block photons of larger energy than the bandgap. Using capacitance-voltage analysis, high temperature rapid thermal annealing is shown to induce defects in dilute nitride cells, which explains the drop in open circuit voltage compared to lower temperature annealed cells. The doping level of polymer solar cells exposed to air is found to increase with continued exposure using Mott-Schottky capacitance analysis. Current-voltage measurements show the formation of an Al2O3 barrier layer at the polymer/aluminium interface. The usefulness of capacitance-voltage measurements to probe the polymer/fullerene interface is investigated in thermally evaporated thiophene/C60 cells.
126

Exploration of Majority Logic Based Designs for Arithmetic Circuits

Labrado, Carson 01 January 2017 (has links)
Since its inception, Moore's Law has been a reliable predictor of computational power. This steady increase in computational power has been due to the ability to fit increasing numbers of transistors in a single chip. A consequence of increasing the number of transistors is also increasing the power consumption. The physical properties of CMOS technologies will make this powerwall unavoidable and will result in severe restrictions to future progress and applications. A potential solution to the problem of rising power demands is to investigate alternative low power nanotechnologies for implementing logic circuits. The intrinsic properties of these emerging nanotechnologies result in them being low power in nature when compared to current CMOS technologies. This thesis specifically highlights quantum dot celluar automata (QCA) and nanomagnetic logic (NML) as just two possible technologies. Designs in NML and QCA are explored for simple arithmetic units such as full adders and subtractors. A new multilayer 5-input majority gate design is proposed for use in NML. Designs of reversible adders are proposed which are easily testable for unidirectional stuck at faults.
127

Étude des mécanismes de capture et de fuite des excitons dans les boîtes quantiques d'InAs/InP

Gélinas, Guillaume January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
128

Silver nanowire transparent conductors for quantum dot photovoltaics

Hjerrild, Natasha E. January 2013 (has links)
This thesis studies the application of silver nanowire transparent conductors in PbS quantum dot photovoltaics. Silver nanowires were synthesized using a colloidal method and characterized using scanning electron microscopy. Nanowires were deposited on glass substrates by a stamp transfer process to generate a low density continuous network of conductive nanowires. This resulted in a highly conductive and transparent film appropriate for optoelectronic applications. Nanowire synthesis, deposition, and processing were optimised to produce transparent conductors suitable for thin film photovoltaics. These nanowire films were used to fabricate lead sulphide (PbS) colloidal quantum dot solar cells. In this structure, p-type PbS quantum dots form a junction with a n-type ZnO nanoparticle layer. A variety of fabrication and processing treatments were developed in order to reduce short-circuiting of devices and to enhance cell performance. Moderate nanowire density, improved ZnO adherence, slight device aging, and increased PbS film thickness proved to result in the highest quality devices. The champion device developed in this thesis achieved a power conversion efficiency of 2.2%.
129

Transporte quântico em spintrônica: corrente e shot noise via funções de Green de não equilíbrio. / Quantum transport in Spintronics: current and shot noise via nonequilibrium Green functions.

Souza, Fabricio Macedo de 20 December 2004 (has links)
Estudamos transporte quântico dependente de spin em sistemas de ponto e de poço quântico acoplados a contatos magnéticos. O primeiro passo do nosso estudo foi a dedução de fórmulas originais para a corrente e para o ruído em sistemas com tunelamento dependente de spin, através do formalismo de funções de Green de mão equilíbrio. As equações deduzidas reproduzem casos limites da literatura - em particular as fórmulas de Landauer-Buttiker. Posteriormente aplicamos essas fórmulas para estudar três sistemas distintos: (1) ponto quântico acoplado a contatos ferromagnéticos, (2) um ponto quântico acoplado a múltiplos terminais ferromagnéticos, e (3) um poço quântico acoplado a terminais de semicondutor magnético diluído (DMS). No sistema (1) consideramos os alinhamentos paralelo (P) e anti-paralelo (AP) entre as magnetizações dos terminais. Nesse sistema levamos em conta interação de Coulomb e espalhamento de spin no ponto quântico. Com as fórmulas para corrente e ruído deduzidas aqui, encontramos, por exemplo, que a interação de Coulomb, combinada com o magnetismo dos eletrodos, leva a um bloqueio de Coulomb dependente de spin. Esse efeito por sua vez leva a uma polarização da corrente que pode ser modulada (intensidade e sinal) através de uma tens~ao externa. Também encontramos que o espalhamento de spin leva a comportamentos contrastantes entre corrente e ruído. Enquanto a corrente na configuração AP aumenta com a taxa de espalhamento de spin R, o ruído nessa mesma configuração é suprimido para uma certa faixa de valores de R. Um outro efeito interessante que observamos foi a possibilidade de se suprimir o ruído térmico através de uma tensão de porta. Para o sistema (2) mostramos que é possível injetar corrente &#8593-polarizada no ponto quântico e coletar simultaneamente correntes &#8593 e &#8595 polarizadas em terminais diferentes. Além disso, a corrente ao passar do reservatório emissor para um dos reservatórios coletores tem a sua polarização intensificada. Portanto esse sistema pode operar como inversor e amplificador de polarização de corrente. Por último, analisamos os efeitos de terminais DMS e quantização de Landau (na presença de um campo magnético externo) sobre a corrente e o ruído no sistema (3). Encontramos que o efeito Zeeman gigante nos terminais DMS, gerado pela interação de troca s-d, leva a uma polarização da corrente. Em particular, para uma certa faixa de tensão o efeito Zeeman gigante resulta na completa supressão de uma dada componente de spin no transporte. Com isso é possível controlar a polarização da corrente através de uma tensão externa. Também observamos oscilações na corrente, no ruído e no fator de Fano como função do campo magnético. / We study spin dependent quantum transport in quantum dots and quantum well devices attached to magnetic leads. We first derive general formulas, including electron-electron interaction and spin flip, for both current and noise, using the no equilibrium Green function technique (Keldysh). From our equations we regain limiting cases in the literature - in particular the Landauer-Buttiker formula when we neglect electron-electron interaction. We apply these formulas to study three distinct systems: (1) a quantum dot attached to two ferromagnetic leads, (2) a quantum dot linked to many ferromagnetic leads, and (3) a quantum well coupled to dilute magnetic semiconductor (DMS) terminals. In the first system we consider both parallel (P) and anti-parallel (AP) ferromagnetic alignments of the leads. Coulomb interaction and spin flip scattering are also taken into account. With the formulas for the current and the noise derived here, we find, for instance, that the Coulomb interaction, combined with the magnetism of the electrodes, gives rise to a spin-dependent Coulomb blockade. This effect allows the control (intensity and sign) of the current polarization via the bias voltage. We also observe that spin flip scattering yields contrasting behavior between current and shot noise. While the current in the AP configuration increases with the spin flip, the shot noise becomes suppressed for a range of spin flip rates. Another interesting finding is the possibility to suppress the thermal noise via a gate voltage. For the dot coupled to three magnetic leads, we show that it is possible to inject current &#8593-polarized into the dot from the FM emitter, detect simultaneously &#8593 and &#8595 - polarized currents at distinct collectors. In addition, we find that the current has its polarization amplified when going from the emitter to one of the collectors. Therefore we have a device that operates as both as current polarization inverter and amplifier. Finally, we analyze the effects of DMS leads and Landau quantization on the current and noise of system (3). We and that the giant Zeeman effect in the DMS leads, due to the it s-d exchange interaction, gives rise to a spin polarized current, and for a particular bias voltage range, full suppression of one spin component. This gives rise to the possibility of tuning the current polarization via the bias voltage. We also observe oscillations in the current, the noise and the Fano factor as a function of the magnetic field.
130

Estudos das fototransformações de fotossensibilizadores de interesse em fotoquimioterapia na presença de nanoestruturas / Studies of the phototransformations of photosensitizers of interest in photochemotherapy in the presence of nanostructures

Pavanelli, André Luan dos Santos 19 July 2016 (has links)
A Terapia Fotodinâmica (TFD) é um método de tratamento do câncer e de outras doenças baseado no efeito conjunto de um composto fotoativo, luz da região visível ou infravermelho próximo e oxigênio molecular. O diagnóstico por fluorescência (DF) é uma técnica para o diagnóstico precoce de diversas doenças que consiste em utilizar algum composto fluorescente para distinguir tecido tumoral de tecido saudável. As porfirinas são amplamente utilizadas como fotossensibilizadores (FS) na TFD e como fluoróforos (FF) no DF. Os pontos quânticos (PQ) são novas nanoestruturas que possuem intenso e largo espectro de absorção na região espectral UV e visível, espectro de luminescência muito intenso e estreito e são fotoestáveis. Isso os torna promissores para o uso em TFD ou em DF, competindo com FS e FF orgânicos. A interação entre PQ e FS orgânicos pode aumentar a eficiência de ambos, devido aos processos de transferência de energia e/ou de carga. Durante o fototratamento os FS podem sofrer fototransformações, perdendo sua fotoatividade e formando produtos estáveis tóxicos. Isso torna importante o estudo da fototransformação dos FS. Neste trabalho, estudou-se, através da espectroscopia de absorção óptica, da fluorescência com resolução temporal e de flash-fotólise, a interação das porfirinas meso-tetrametil piridil (TMPyP) e meso-tetrasulfonatofenil (TPPS4) com o PQ de Telureto de Cádmio (CdTe) encapsulado com ácido 3-mercaptopropiônico (MPA) e sua fotólise individual e em conjunto. Os experimentos entre a TMPyP e o PQ mostraram que existe a formação de um complexo de transferência de carga entre a porfirina e o PQ. Verificou-se que a formação do complexo TMPyP-PQ aumenta a eficiência do processo de fotólise. A interação entre a p TPPS4 e o PQ em pH 4,0 (TPPS4 biprotonada) induz a transferência dos prótons para o PQ. A porfirina TPPS4 em pH 7,0 com adição de PQ não apresentou mudanças espectrais. Entretanto, em ambos os pHs, o PQ causava o aumento da velocidade de fotólise da TPPS4, sendo que o efeito do PQ foi maior em pH 4,0. Os resultados obtidos mostraram a importância da carga dos componentes, tanto na sua interação, como na eficiência de fotólise, devido à sua interação eletrostática. Também foi observado um aumento da intensidade da fluorescência de sistemas porfirina-PQ durante a fotólise. Esse efeito pode ser explicado pela redução da supressão da fluorescência devido à diminuição das concentrações dos componentes durante a fotólise. / The Photodynamic Therapy (PDT) is a method of treatment of cancer and other diseases based on combined effects of a photoactive compound, visible or near infrared light and molecular oxygen. The diagnosis by fluorescence (DF) is a technique for diagnostics of disease that consists in utilizing fluorescence compound to discern tumor tissue from a healthy one. Porphyrins are widely used as photosensitizer (PS) in PDT and as fluorophore (FP) in DF. Quantum dots (QD) are new nanostructures, which have intense and broad absorption spectrum in the UV and visible light region, intense and narrow luminescence spectrum and possess high photostability. They are considered promising for clinical application in PDT and/or DF, competing with organic PS and FP. Interaction between QD and organic PS can increase the efficiencies of both, due to the energy and/or charge transfer processes. The PS phototransformation during phototreatment may lead to loss of the PS photoactivity and formation of toxic products, that is important to study the processes of the PS phototransformation. In this work, with the support of absorption spectroscopy, steady state and time resolved fluorescence and flash-photolysis, we study interaction of meso-tetramethyl pyridyl (TMPyP) and meso-tetrakis sulfonatofenyl (TPPS4) porphyrins with CdTe QD functionalized with 3-mercaptopropionic acid (MPA) and their photolysis individual and in mutual. Experiments with TMPyP and QD demonstrate formation of a charge transfer complex between the porphyrin and the QD. We have verified that TMPyP-QD complex increases the efficiency of the porphyrin photolysis. The photolysis of the proper complex has been observed, as well. The interaction between TPPS4 and QD at pH 4.0 (biprotonated TPPS4) provokes deprotonation of the porphyrin via the proton transfer to QD. At pH 7.0 (deprotonated TPPS4) interaction of the porphyrin with the QD does not change TPPS4 spectral characteristics. Nevertheless, at both pHs QD cause increase in the TPPS4 photolysis rate, the effect being higher at pH 4.0. The observed results demonstrate the importance of the component charges both at their interaction and in photolysis efficiency, associated with their electrostatic interaction. The fluorescence intensity of the porphyrin-QD systems is enhanced during photolysis. This effect may be explained as the fluorescence quenching reduction due to decrease of the compound concentrations in the photolysis process.

Page generated in 0.1148 seconds