Spelling suggestions: "subject:"kuantum effect"" "subject:"auantum effect""
1 |
Numerical Investigations of Quantum Effects of ChaosMiroslaw, Latka 08 1900 (has links)
The quantum dynamics of minimum uncertainty wave packets in a system described by the surface-state-electron (SSE) Hamiltonian are studied herein.
|
2 |
Investigation of GaN/AlGaN Multiple Quantum DisksChi, Tung-Wei 30 January 2004 (has links)
In this thesis, two series of self-assembled GaN and AlxGa1-xN nanorods are grown by plasma-assisted molecular beam epitaxy (PAMBE) on Si(111) wafer. The Al contents in AlxGa1-xN nanorods is varied from 6% to 75% by changing the Al cell beam flux (BFM). Second, the GaN/AlGaN multiple quantum wells (MQWs) with variation thickness are grown on the GaN nanorods with a p-GaN layer on the top. Al concentration is determined by electron probe x-ray micro-analysis (EPMA) and x-ray diffraction (XRD). The reflection high-energy electron diffraction (RHEED) and scanning electron microscopy (SEM) images show that the height, density and morphology of nanorods depend on the Al content. The (micro-)PL, CL and Raman spectra also show the variation of the characterization from those of GaN to AlN. The transmission electron microscopy (TEM) images show that the GaN/AlGaN MQWs structures with well widths of 1, 2, 3, 4, 6, 8 and 16 c-LC (Lattice constant on c-direction) were successful grown on the nanorods. The (micro-)PL and CL spectra show red-shift of the peak position with the decrease of Mg-doped concentration. When the well thickness is less then 4 c-LC, the CL spectra show blue-shift of the peak position with the decrease of the well thickness due to the Quantum-confined effect and the polarization effect in MQWS.
|
3 |
Exploring Nonlinear Responses of Quantum Dissipative Systems from Reduced Hierarchy Equations of Motion Approach / 階層型運動方程式による量子散逸系の非線形応答の研究Sakurai, Atsunori 23 May 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第17771号 / 理博第3894号 / 新制||理||1562(附属図書館) / 30578 / 京都大学大学院理学研究科化学専攻 / (主査)教授 谷村 吉隆, 准教授 安藤 耕司, 教授 寺嶋 正秀 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
4 |
Nonadiabatic quantum molecular dynamics with hopping, II. Role of nuclear quantum effects in atomic collisionsFischer, Michael, Handt, Jan, Schmidt, Rüdiger 09 September 2014 (has links) (PDF)
An extension of the nonadiabatic quantum molecular dynamics approach is presented to account for electron-nuclear correlations in the dynamics of atomic many-body systems. The method combines electron dynamics described within time-dependent density-functional or Hartree-Fock theory with trajectory-surface-hopping dynamics for the nuclei, allowing us to take into account explicitly a possible external laser field. As a case study, a model system of H++H collisions is considered where full quantum-mechanical calculations are available for comparison. For this benchmark system the extended surface-hopping scheme exactly reproduces the full quantum results. Future applications are briefly outlined.
|
5 |
Nonadiabatic quantum molecular dynamics with hopping, II. Role of nuclear quantum effects in atomic collisionsFischer, Michael, Handt, Jan, Schmidt, Rüdiger January 2014 (has links)
An extension of the nonadiabatic quantum molecular dynamics approach is presented to account for electron-nuclear correlations in the dynamics of atomic many-body systems. The method combines electron dynamics described within time-dependent density-functional or Hartree-Fock theory with trajectory-surface-hopping dynamics for the nuclei, allowing us to take into account explicitly a possible external laser field. As a case study, a model system of H++H collisions is considered where full quantum-mechanical calculations are available for comparison. For this benchmark system the extended surface-hopping scheme exactly reproduces the full quantum results. Future applications are briefly outlined.
|
6 |
MD simulations of atomic hydrogen scattering from zero band-gap materialsKammler, Marvin 05 July 2019 (has links)
No description available.
|
7 |
Fully quantum dynamics of protonated water clusters / Dynamique totalement quantique d'agrégats d'eau protonésMouhat, Félix 07 September 2018 (has links)
De nos jours, il n'existe encore aucune théorie capable de proposer une description précise et quantitative du transfert de proton en solution. En effet, ce problème est complexe du fait de la grande diversité des interactions existant dans l'eau liquide, à savoir: des interactions non liantes de type Van der Waals, des liaisons faiblement covalentes et des liaisons hydrogènes remarquablement fortes. Ces dernières sont d'ailleurs à l'origine des nombreuses propriétés fascinantes de l'eau à l'échelle macroscopique. À cela s'ajoutent les effets quantiques nucléaires dus à la faible masse de l'hydrogène, qui modifient profondément la nature de la surface d'énergie potentielle décrivant le transfert de proton le long de sa coordonnée de réaction. Nous proposons dans cette thèse une approche tout quantique basée sur une description quasi exacte de la fonction d'onde du système par l'utilisation de méthodes stochastiques de type Monte Carlo Quantique. Cette technique, combinée avec le formalisme des équations de Langevin et des intégrales de chemin de Feynman, permet de simuler à un niveau de précision inédit, n'importe quel système chimique en phase gaz ou en solution. Nous appliquons cette méthodologie à des agrégats d'eau neutres ou protonés pour apporter de nouveaux éclaircissements sur les phénomènes microscopiques régissant la diffusion du proton hydraté dans de tels systèmes. Il est mis en évidence que la mobilité du proton est optimale pour des températures proches des conditions ambiantes, du fait de la compétition subtile entre les effets thermiques et quantiques nucléaires. / There is no theory up to now able to provide an accurate and quantitative description of the proton transfer (PT) yet. Indeed, the complexity of the problem stems from the large diversity of the existing interactions in liquid water, namely: non bonding Van der Waals interactions, weakly covalent bonds and remarkably strong H-bonds. The latter ones are at the origin of the numerous fascinating properties of water at the macroscopic scale. In addition to such interactions, the nuclear quantum effects arising from the hydrogen light mass deeply modify the potential energy surface, and must be taken into account. In this thesis, we propose a fully quantum approach based on an almost exact description of the electronic wave function by means of Quantum Monte Carlo (QMC) methods. Our novel technique combines QMC with a Langevin-based Molecular Dynamics and the Feynman's path integral formalism. This allows one to perform fully quantum simulations of systems in gas or condensed phase, at an unprecedented level of accuracy,. We apply our approach to neutral or charged protonated water clusters to shed light on the microscopic phenomena driving the proton diffusion in such systems. We discovered that the proton hopping is optimal for temperatures close to ambient conditions, due to the subtle competition between thermal and nuclear quantum effects. This is highly suggestive of the importance of quantum nuclear effects to make PT processes - relevant for life - most efficient at room temperature.
|
Page generated in 0.0438 seconds