Spelling suggestions: "subject:"kuantum filtering"" "subject:"auantum filtering""
1 |
Controlabilidade de sistemas de hardware para computação quântica: definição do problema e discussão de aspectos analíticos e numéricos. / Controllability of hardware systems for quantum computing: problem possing and discussion of analytical and numerical topics.Cunha, Leandro Dias 21 March 2016 (has links)
Este trabalho possui como tema principal o estudo da dinâmica de sistemas quânticos da perspectiva da teoria de sistemas dinâmicos, em particular, do ponto de vista da teoria de controle. Os principais tópicos abordados são (i) a análise da controlabilidade dos sistemas quânticos em dimensão finita e infinita e (ii) a teoria generalizada de medição de sistemas quânticos com o objetivo de obter as equações diferenciais estocásticas associadas a sistemas submetidos a processos de medição contínuos. Com relação à controlabilidade de sistemas dinâmicos quânticos fechados em dimensão finita resgatamos da literatura os resultados, já consolidados, da aplicação da teoria de grupos e álgebras de Lie aos essa classe de sistemas dinâmicos. Em dimensão infinita, a aplicação direta das técnicas de controle geométrico já não ocorre diretamente. Em espaços de estados de dimensão infinita as técnicas de análise matemática devem ser mais sofisticadas, há problemas relacionados à convergência e problemas relacionados a operadores não limitados. Os principais resultados conhecidos da literatura são apresentados e suas limitações são discutidas. Realizamos em seguida uma analogia entre sistemas clássicos lineares e sistemas dinâmicos quânticos de dimensão infinita cuja dinâmica é restrita a uma álgebra de operadores auto adjuntos comutativa. Observamos também que a controlabilidade de alguns sistemas quânticos em dimensão infinita está associada a Hamiltonianos não lineares. Notamos, em particular, que os sistemas quânticos comutativos estão associados a operadores não lineares. Com relação à teoria de medição de sistemas quânticos, partimos da teoria de sistemas quânticos abertos para a obtenção da equação dinâmica que rege a evolução dos sistemas não conservativos. Em paralelo, realizamos uma análise da descrição matemáticas dos experimentos de medição em sistemas quânticos desde os postulados de medição ortogonal até a descrição de processos de medição contínuos. Observamos que a equação de Schrödinger estocástica associada a um processo de medição contínuo possui como gerador infinitesimal um Hamiltoniano não linear no operador auto adjunto associado ao observável. Realizamos em seguida uma discussão a respeito das implicações de processos de medição contínuos na dinâmica de sistemas quânticos, analisando possíveis impactos em sua controlabilidade. Analisamos também o caso particular de sistemas quânticos cujos operadores associados a sua dinâmica e a seus observáveis estão restritos a uma mesma álgebra comutativa. Concluímos com sugestões de trabalhos futuros relacionados controlabilidade em dimensão infinita e a à dinâmica de sistemas quânticos sujeitos a medição. / The main theme of this work is to study the dynamics of quantum systems from the perspective of the theory of dynamical systems, in particular, from the point of view of control theory. The main topics covered are (i) the analysis of controllability of quantum systems in finite and infinite dimensions and (ii) the general theory of measurement of quantum systems in order to get to the stochastic differential equations associated with systems subject to continuous measurement. Regarding the controllability of closed quantum dynamical systems in finite dimension, the standard results from the literature were presented: the application of group theory and Lie algebra to this class of dynamical systems. In infinite dimensions, the direct application of geometric control techniques is no longer possible. In infinite dimensional state spaces the mathematical analysis techniques need to be more sophisticated, there are problems related to convergence and issues related to unbounded operators. The main results known from the literature were presented and their limitations discussed. Then an analogy was performed between linear classical systems and infinite dimensional quantum dynamical systems whose dynamics is restricted to a commutative algebra of self adjoint operators. We also note that the controllability of some quantum systems in infinite dimension is associated with nonlinear Hamiltonians. We note, in particular, that the commutative quantum systems are associated with nonlinear operators. With respect to the measurement theory of quantum systems, we start in the structure of the theory of open quantum systems in order to obtain the dynamical equation governing the evolution of non-conservative systems. In parallel, we conducted an analysis of the mathematical description of the measurement experiments in quantum systems from the orthogonal measurement postulates to the description of continuous measurement. We noted that the stochastic Schrödinger equation associated with a continuous measurement process has as its infinitesimal generator a Hamiltonian nonlinear in the self-adjoint operator associated with the observable. Then a discussion about the implications of continuous measurement processes in the dynamics of quantum systems was conducted, analyzing possible impacts on its controllability. We also looked at the particular case of quantum systems whose operators associated with their dynamics and their observable are restricted to the same commutative algebra. We cluded with suggestions for future work related to controllability in infinite dimension and the dynamics of quantum systems subjected to measurement processes.
|
2 |
Controlabilidade de sistemas de hardware para computação quântica: definição do problema e discussão de aspectos analíticos e numéricos. / Controllability of hardware systems for quantum computing: problem possing and discussion of analytical and numerical topics.Leandro Dias Cunha 21 March 2016 (has links)
Este trabalho possui como tema principal o estudo da dinâmica de sistemas quânticos da perspectiva da teoria de sistemas dinâmicos, em particular, do ponto de vista da teoria de controle. Os principais tópicos abordados são (i) a análise da controlabilidade dos sistemas quânticos em dimensão finita e infinita e (ii) a teoria generalizada de medição de sistemas quânticos com o objetivo de obter as equações diferenciais estocásticas associadas a sistemas submetidos a processos de medição contínuos. Com relação à controlabilidade de sistemas dinâmicos quânticos fechados em dimensão finita resgatamos da literatura os resultados, já consolidados, da aplicação da teoria de grupos e álgebras de Lie aos essa classe de sistemas dinâmicos. Em dimensão infinita, a aplicação direta das técnicas de controle geométrico já não ocorre diretamente. Em espaços de estados de dimensão infinita as técnicas de análise matemática devem ser mais sofisticadas, há problemas relacionados à convergência e problemas relacionados a operadores não limitados. Os principais resultados conhecidos da literatura são apresentados e suas limitações são discutidas. Realizamos em seguida uma analogia entre sistemas clássicos lineares e sistemas dinâmicos quânticos de dimensão infinita cuja dinâmica é restrita a uma álgebra de operadores auto adjuntos comutativa. Observamos também que a controlabilidade de alguns sistemas quânticos em dimensão infinita está associada a Hamiltonianos não lineares. Notamos, em particular, que os sistemas quânticos comutativos estão associados a operadores não lineares. Com relação à teoria de medição de sistemas quânticos, partimos da teoria de sistemas quânticos abertos para a obtenção da equação dinâmica que rege a evolução dos sistemas não conservativos. Em paralelo, realizamos uma análise da descrição matemáticas dos experimentos de medição em sistemas quânticos desde os postulados de medição ortogonal até a descrição de processos de medição contínuos. Observamos que a equação de Schrödinger estocástica associada a um processo de medição contínuo possui como gerador infinitesimal um Hamiltoniano não linear no operador auto adjunto associado ao observável. Realizamos em seguida uma discussão a respeito das implicações de processos de medição contínuos na dinâmica de sistemas quânticos, analisando possíveis impactos em sua controlabilidade. Analisamos também o caso particular de sistemas quânticos cujos operadores associados a sua dinâmica e a seus observáveis estão restritos a uma mesma álgebra comutativa. Concluímos com sugestões de trabalhos futuros relacionados controlabilidade em dimensão infinita e a à dinâmica de sistemas quânticos sujeitos a medição. / The main theme of this work is to study the dynamics of quantum systems from the perspective of the theory of dynamical systems, in particular, from the point of view of control theory. The main topics covered are (i) the analysis of controllability of quantum systems in finite and infinite dimensions and (ii) the general theory of measurement of quantum systems in order to get to the stochastic differential equations associated with systems subject to continuous measurement. Regarding the controllability of closed quantum dynamical systems in finite dimension, the standard results from the literature were presented: the application of group theory and Lie algebra to this class of dynamical systems. In infinite dimensions, the direct application of geometric control techniques is no longer possible. In infinite dimensional state spaces the mathematical analysis techniques need to be more sophisticated, there are problems related to convergence and issues related to unbounded operators. The main results known from the literature were presented and their limitations discussed. Then an analogy was performed between linear classical systems and infinite dimensional quantum dynamical systems whose dynamics is restricted to a commutative algebra of self adjoint operators. We also note that the controllability of some quantum systems in infinite dimension is associated with nonlinear Hamiltonians. We note, in particular, that the commutative quantum systems are associated with nonlinear operators. With respect to the measurement theory of quantum systems, we start in the structure of the theory of open quantum systems in order to obtain the dynamical equation governing the evolution of non-conservative systems. In parallel, we conducted an analysis of the mathematical description of the measurement experiments in quantum systems from the orthogonal measurement postulates to the description of continuous measurement. We noted that the stochastic Schrödinger equation associated with a continuous measurement process has as its infinitesimal generator a Hamiltonian nonlinear in the self-adjoint operator associated with the observable. Then a discussion about the implications of continuous measurement processes in the dynamics of quantum systems was conducted, analyzing possible impacts on its controllability. We also looked at the particular case of quantum systems whose operators associated with their dynamics and their observable are restricted to the same commutative algebra. We cluded with suggestions for future work related to controllability in infinite dimension and the dynamics of quantum systems subjected to measurement processes.
|
3 |
Feedback exponential stabilization of open quantum systems undergoing continuous-time measurements / Stabilisation exponentielle par rétroaction de systèmes quantiques ouverts soumis à des mesures en temps continuLiang, Weichao 30 October 2019 (has links)
Dans cette thèse, nous nous intéressons à la stabilisation par rétroaction des systèmes quantiques ouverts soumis à des mesures imparfaites en temps continu. Tout d'abord, nous introduisons la théorie du filtrage quantique pour décrire l'évolution temporelle de l'opérateur de densité conditionnelle représentant un état quantique en interaction avec un environnement. Ceci est décrit par une équation différentielle stochastique à valeurs matricielles. Deuxièmement, nous étudions le comportement asymptotique des trajectoires quantiques associées à des systèmes de spin à N niveaux pour des états initiaux donnés, pour les cas avec et sans loi de rétroaction. Dans le cas sans loi de rétroaction, nous montrons la propriété de réduction de l'état quantique à vitesse exponentielle. Ensuite, nous fournissons des conditions suffisantes sur la loi de contrôle assurant une convergence presque sûre vers un état pur prédéterminé correspondant à un vecteur propre de l'opérateur de mesure. Troisièmement, nous étudions le comportement asymptotique des trajectoires de systèmes ouverts à plusieurs qubits pour des états initiaux donnés. Dans le cas sans loi de rétroaction, nous montrons la réduction exponentielle de l'état quantique pour les systèmes N-qubit avec deux canaux quantiques. Dans le cas particulier des systèmes à deux qubits, nous donnons des conditions suffisantes sur la loi de contrôle assurant la convergence asymptotique vers un état cible de Bell avec un canal quantique, et la convergence exponentielle presque sûre vers un état cible de Bell avec deux canaux quantiques. Ensuite, nous étudions le comportement asymptotique des trajectoires des systèmes quantiques ouverts de spin-1/2 avec les états initiaux inconnus soumis à des mesures imparfaites en temps continu, et nous fournissons des conditions suffisantes au contrôleur pour garantir la convergence de l'état estimé vers l'état quantique réel lorsque le temps tend vers l'infini. En conclusion, nous discutons de manière heuristique du problème de stabilisation exponentielle des systèmes de spin à N niveaux avec les états initiaux inconnus et nous proposons des lois de rétroaction candidates afin de stabiliser le système de manière exponentielle. / In this thesis, we focus on the feedback stabilization of open quantum systems undergoing imperfect continuous-time measurements. First, we introduce the quantum filtering theory to obtain the time evolution of the conditional density operator representing a quantum state in interaction with an environment. This is described by a matrix-valued stochastic differential equation. Second, we study the asymptotic behavior of quantum trajectories associated with N-level quantum spin systems for given initial states, for the cases with and without feedback law. For the case without feedback, we show the exponential quantum state reduction. Then, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergence to a predetermined pure state corresponding to an eigenvector of the measurement operator. Third, we study the asymptotic behavior of trajectories of open multi-qubit systems for given initial states. For the case without feedback, we show the exponential quantum state reduction for N-qubit systems with two quantum channels. Then, we focus on the two-qubit systems, and provide sufficient conditions on the feedback control law ensuring asymptotic convergence to a target Bell state with one quantum channel, and almost sure exponential convergence to a target Bell state with two quantum channels. Next, we investigate the asymptotic behavior of trajectories of open quantum spin-1/2 systems with unknown initial states undergoing imperfect continuous-time measurements, and provide sufficient conditions on the controller to guarantee the convergence of the estimated state towards the actual quantum state when time goes to infinity. Finally, we discuss heuristically the exponential stabilization problem for N-level quantum spin systems with unknown initial states and propose candidate feedback laws to stabilize exponentially the system.
|
4 |
Stabilisation des systèmes quantiques à temps discrets et stabilité des filtres quantiques à temps continus / Stabilization of discrete-time quantum systems and stability of continuous-time quantum filtersAmini, Hadis 27 September 2012 (has links)
Dans cette thèse, nous étudions des rétroactions visant à stabiliser des systèmes quantiques en temps discret soumis à des mesures quantiques non-destructives (QND), ainsi que la stabilité des filtres quantiques à temps continu. Cette thèse comporte deux parties. Dans une première partie, nous généralisons les méthodes mathématiques sous-jacentes à une rétroaction quantique en temps discret testée expérimentalement au Laboratoire Kastler Brossel (LKB) de l'École Normale Supérieure (ENS) de Paris. Plus précisément,nous contribuons à un algorithme de contrôle qui a été utilisé lors de cette expérience récente de rétroaction quantique. L'expérience consiste en la préparation et la stabilisation à la demande d'états nombres de photons (états de Fock) d'un champ de micro-ondes au sein d'une cavité supraconductrice. Pour cela, nous concevons des filtres à temps-réel permettant d'estimer les états quantiques malgré des imperfections et des retards de mesure, et nous proposons une loi de rétroaction assurant la stabilisation d'un état cible prédéterminé. Cette rétroaction de stabilisation est obtenue grâce à des méthodes Lyapunov stochastique et elle repose sur un filtre estimant l'état quantique. Nous prouvons qu'une telle stratégie de contrôle se généralise à d'autres systèmes quantiques en temps discret soumis à des mesures QND. Dans une seconde partie, nous considérons une extension du résultat obtenu pour des filtres quantiques en temps discret au cas des filtres en temps continu. Dans ce but, nous démontrons la stabilité d'un filtre quantique associé à l'équation maîtresse stochastique usuelle découlant par un processus de Wiener. La stabilité signifie ici que la “distance”entre l'état physique et le filtre quantique associé décroit en moyenne. Cette partie étudie également la conception d'un filtre optimal en temps continu en présence d'imperfections de mesure. Pour ce faire, nous étendons la méthode utilisée précédemment pour construire les filtres quantiques en temps discret tolérants aux imperfections de mesure. Enfin,nous obtenons heuristiquement des filtres optimaux généraux en temps continu, dont la dynamique est décrite par des équations maîtresses stochastiques découlant à la fois par processus de Poisson et Wiener. Nous conjecturons que ces filtres optimaux sont stables. / In this thesis, we study measurement-based feedbacks stabilizing discrete-time quantum systems subject to quantum non-demolition (QND) measurements and stability of continuous-time quantum filters. This thesis contains two parts. In the first part, we generalize the mathematical methods underlying a discrete-time quantum feedback experimentally tested in Laboratoire Kastler Brossel (LKB) at Ecole Normale Supérieure (ENS) de Paris. In fact, we contribute to a control algorithm which has been used in this recent quantum feedback experiment. This experiment prepares and stabilizes on demand photon-number states (Fock states) of a microwave field in a superconducting cavity. We design real-time filters allowing estimation of the state despite measurement imperfections and delays, and we propose a feedback law which ensures the stabilization of a predetermined target state. This stabilizing feedback is obtained by stochastic Lyapunov techniques and depends on a filter estimating the quantum state. We prove that such control strategy extends to other discrete-time quantum systems under QND measurements. The second part considers an extension, to continuous-time, of a stability result for discrete-time quantum filters. Indeed, we prove the stability of a quantum filter associated to usual stochastic master equation driven by a Wiener process. This stability means that a “distance” between the physical state and its associated quantum filter decreases in average. Another subject that we study in this part is related to the design of a continuous-time optimal filter, in the presence of measurement imperfections. To this aim, we extend a construction method for discrete-time quantum filters with measurement imperfections. Finally, we obtain heuristically generalized continuous-time optimal filters whose dynamics are given by stochastic master equations driven by both Poisson and Wiener processes. We conjecture the stability of such optimal filters.
|
Page generated in 0.0718 seconds