• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelles approches pour la synthèse de lois de commande non linéaires robustes. Application à un actionneur électropneumatique et proposition d'une solution au problème de redécollage

Turki, Karima 23 September 2010 (has links) (PDF)
Une partie des travaux présentés dans ce mémoire est inspirée du modèle mathématique écrit sous forme " semi strict feedback " du vérin électropneumatique présent au centre d'essais Fluid Power du laboratoire Ampère. En effet, ce modèle a suscité un approfondissement des travaux de recherche concernant la synthèse de lois de commandes non linéaires robustes des systèmes " strict feedback " (ou triangulaires) généraux. Ainsi deux approches directes sont développées pour l'élaboration de lois de commandes continues mono et multidimensionnelles en suivi de trajectoires. La stabilité exponentielle globale du point d'équilibre est prouvée pour le système nominal. La preuve de la stabilité au sens entrée bornée / état borné (" input-state stable ") est également proposée dans le cas de variations paramétriques ou de dynamiques mal modélisées. De plus, une solution au problème du suivi de trajectoire pour une classe de systèmes non linéaires monodimensionnels sous forme " strict feedback " avec une dynamique interne à minimum ou non minimum de phase est énoncée. Après un rappel des modèles de simulation et de commande utilisés, la mise en oeuvre sur le vérin électropneumatique des approches proposées est alors décrite. Les résultats expérimentaux obtenus sont convaincants et ont permis de compléter le benchmark de l'ensemble des travaux du groupe "Automatique, Commande et Mécatronique " du laboratoire par une extension du tableau comparatif initialisé en 1999 des lois de commandes appliquées à ce type d'actionneur. Enfin, une solution est proposée pour résoudre le phénomène du redécollage du vérin électropneumatique. Ce problème, rencontré par le groupe depuis de nombreuses années, concerne toutes les commandes linéaires et non linéaires mono et multidimensionnelles étudiées au laboratoire. Il se traduit par un mouvement saccadé du vérin lorsque les trajectoires suivies en position comportent des phases statiques. Il résulte conjointement de l'existence des forces de frottement sec et du fait que le système atteint lors de ces régimes seulement un équilibre mécanique alors que les pressions dans les chambres continuent à évoluer. Pour pallier à cet inconvénient, la dernière partie de ce mémoire propose de commuter la commande sur deux régulations de pressions quand le système atteint cet équilibre partiel. Cette technique est finalement mise en oeuvre et son efficacité est constatée.
2

Commande et observation des systèmes à retards variables: Théorie et applications

Seuret, Alexandre 04 October 2006 (has links) (PDF)
Ce mémoire concerne la commande et l'observation des systèmes à retard variable linéaires ou non ainsi que plusieurs applications qui y sont liées: échantillonnage, commande en réseau et commande par retour visuel. Pour de tels systèmes dynamiques, l'évolution dépend non seulement des informations à l'instant présent mais aussi de son passé. Ce sont des systèmes ``héréditaires''.<br /><br />Le premier chapitre est consacré à la présentation du contexte et des bases théoriques de l'étude.<br /><br />Le deuxième chapitre traite du problème théorique de la stabilité et de la stabilisation exponentielles des systèmes linéaires à retard variable. L'étude concerne donc non seulement la convergence mais caractérise aussi sa rapidité.<br /><br />Le troisième chapitre généralise ces résultats à des systèmes ne se réduisant pas à des équations linéaires stationnaires. En particulier, on considère deux problèmes pratiques : l'incertitude provenant de variation de paramètres et la saturation de commande.<br /><br />Dans le quatrième chapitre, on procède à l'étude des systèmes continus à commande échantillonnée. L'approche par retard variable proposée permet d'utiliser des techniques de ``temps continu''.<br /><br />Le cinquième chapitre concerne l'observation des systèmes à retard. Nous présentons des résultats concernant le cas, fréquent dans la littérature, de retard connu mais aussi de retard inconnu, plus délicat.<br /><br />Le dernier chapitre présente quelques problèmes expérimentaux où les résultats théoriques trouvent finalement leur justification. Nous nous penchons particulièrement sur le problème de la commande d'un robot à distance à travers un réseau et de la commande d'un système dont les sorties proviennent d'un caméra qui induit un retard et un échantillonnage.
3

Fonctions Presque Automorphes et Applications aux EquationsDynamiques sur Time Scales / Almost automorphic functions and applications to dynamic equations on time scales.

Milce, Aril 04 December 2015 (has links)
Dans cette thèse, nous affinons l'étude des fonctions presque automorphes sur time scales introduites dans la littérature par Lizama et Mesquita, nous explorons de nouvelles propriétés de ces fonctions et appliquons les résultats à étudier l'existence et l'unicité de solution presque automorphe d'une nouvelle classe d'équations dynamiques sur time scales. Puis nous introduisons la notion de fonction presque automorphe de classe Cn, nous investiguons les propriétés fondamentales de ces fonctions et utilisons les résultats pour établir l'existence, l'unicité et la stabilité globale et exponentielle de solution presque automorphe de classe C1 d'un système d'équations dynamiques avec délai variable fini modélisant un réseau de neurones. Ensuite nous présentons le concept de fonctions asymptotiquement presque automorphes de classe Cn. Nous démontrons quasiment toutes les propriétés de ces fonctions, lesquelles nous permettent, sous des hypothèses convenables, d'établir, d'une part, que l'unique solution d'un problème avec condition initiale est asymptotiquement presque automorphe de classe C1, et d'autre part, l'existence et l'unicité de solution asymptotiquement presque automorphe pour une équation intégro-dynamque avec conditon initiale non locale sur time scales. Enfin, en utilisant la notion de semi-groupe sur time scales de Hamza et Oraby, nous généralisons les résultats de Lizama et Mesquita en dimension infinie, c'est-à-dire, nous étudions l'existence et l'unicité des solutions presque automorphes pour des équations dynamiques semi linéaires abstraites sur time scales. / In this thesis, we refine the notion of almost automorphic functions on time scales introduced in the literature by Lizama and Mesquita, we explore some new properties of such functions and apply the results to study the existence and uniqueness of almost automorphic solution for a new class of dynamic equations on time scales. Then we introduce the concept of almost automorphic functions of order n on time scales, we investigate the fundamental properties of these functions and we use the findings to establish the existence and uniqueness and the global stability of almost automorphic solution of one to a first order dynamical equation with finite time varying delay. Then we present the concept of asymptotically almost automorphic functions of order n on time scales. We study the properties of these functions and we use the results to prove, under suitable hypothesis, that the unique solution to a problem with initial condition is asymptotically almost automorphic of order one at the one hand, and the existence and uniqueness of asymptotically almost automorphic solution for an integro-dynamic equation with nonlocal initial conditon on time scales in other hand. Finally, using the concept of semigroup on time scales introduced by Hamza and Oraby, we generalize the results in Lizama and Mesquita's paper for abstract Banach spaces, that is, we study the existence and uniqueness of almost automorphic solution for semilinear abstract dynamic equations on time scales.
4

Feedback exponential stabilization of open quantum systems undergoing continuous-time measurements / Stabilisation exponentielle par rétroaction de systèmes quantiques ouverts soumis à des mesures en temps continu

Liang, Weichao 30 October 2019 (has links)
Dans cette thèse, nous nous intéressons à la stabilisation par rétroaction des systèmes quantiques ouverts soumis à des mesures imparfaites en temps continu. Tout d'abord, nous introduisons la théorie du filtrage quantique pour décrire l'évolution temporelle de l'opérateur de densité conditionnelle représentant un état quantique en interaction avec un environnement. Ceci est décrit par une équation différentielle stochastique à valeurs matricielles. Deuxièmement, nous étudions le comportement asymptotique des trajectoires quantiques associées à des systèmes de spin à N niveaux pour des états initiaux donnés, pour les cas avec et sans loi de rétroaction. Dans le cas sans loi de rétroaction, nous montrons la propriété de réduction de l'état quantique à vitesse exponentielle. Ensuite, nous fournissons des conditions suffisantes sur la loi de contrôle assurant une convergence presque sûre vers un état pur prédéterminé correspondant à un vecteur propre de l'opérateur de mesure. Troisièmement, nous étudions le comportement asymptotique des trajectoires de systèmes ouverts à plusieurs qubits pour des états initiaux donnés. Dans le cas sans loi de rétroaction, nous montrons la réduction exponentielle de l'état quantique pour les systèmes N-qubit avec deux canaux quantiques. Dans le cas particulier des systèmes à deux qubits, nous donnons des conditions suffisantes sur la loi de contrôle assurant la convergence asymptotique vers un état cible de Bell avec un canal quantique, et la convergence exponentielle presque sûre vers un état cible de Bell avec deux canaux quantiques. Ensuite, nous étudions le comportement asymptotique des trajectoires des systèmes quantiques ouverts de spin-1/2 avec les états initiaux inconnus soumis à des mesures imparfaites en temps continu, et nous fournissons des conditions suffisantes au contrôleur pour garantir la convergence de l'état estimé vers l'état quantique réel lorsque le temps tend vers l'infini. En conclusion, nous discutons de manière heuristique du problème de stabilisation exponentielle des systèmes de spin à N niveaux avec les états initiaux inconnus et nous proposons des lois de rétroaction candidates afin de stabiliser le système de manière exponentielle. / In this thesis, we focus on the feedback stabilization of open quantum systems undergoing imperfect continuous-time measurements. First, we introduce the quantum filtering theory to obtain the time evolution of the conditional density operator representing a quantum state in interaction with an environment. This is described by a matrix-valued stochastic differential equation. Second, we study the asymptotic behavior of quantum trajectories associated with N-level quantum spin systems for given initial states, for the cases with and without feedback law. For the case without feedback, we show the exponential quantum state reduction. Then, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergence to a predetermined pure state corresponding to an eigenvector of the measurement operator. Third, we study the asymptotic behavior of trajectories of open multi-qubit systems for given initial states. For the case without feedback, we show the exponential quantum state reduction for N-qubit systems with two quantum channels. Then, we focus on the two-qubit systems, and provide sufficient conditions on the feedback control law ensuring asymptotic convergence to a target Bell state with one quantum channel, and almost sure exponential convergence to a target Bell state with two quantum channels. Next, we investigate the asymptotic behavior of trajectories of open quantum spin-1/2 systems with unknown initial states undergoing imperfect continuous-time measurements, and provide sufficient conditions on the controller to guarantee the convergence of the estimated state towards the actual quantum state when time goes to infinity. Finally, we discuss heuristically the exponential stabilization problem for N-level quantum spin systems with unknown initial states and propose candidate feedback laws to stabilize exponentially the system.
5

Analyse de stabilité des systèmes à commutations sur un domaine de temps non-uniforme / Stability analysis of switched systems on non-uniform time domains

Taousser, Fatima Zohra 07 December 2015 (has links)
Cette thèse s’intéresse à l’étude de la stabilité des systèmes à commutation qui évoluent sur un domaine de temps non uniforme en introduisant la théorie des échelles de temps. On s’intéresse essentiellement aux systèmes dynamiques linéaires à commutation définis sur une échelle de temps particulière T = P{tσk ,tk+1} = ∪∞k=0[tσk , tk+1]. Le système étudié commute entre un sous-système dynamique continu sur les intervalles ∪∞k=0[tσk , tk+1[ et un sous-système dynamique discret aux instants ∪∞k=0{tk+1} (à temps discret) avec un pas discret qui varie dans le temps. Dans une première partie, des conditions suffisantes sont données pour garantir la stabilité exponentielle de cette classe de systèmes à commutation. Ensuite, des conditions nécessaires et suffisantes de stabilité sont données en déterminant une région de stabilité exponentielle. Dans une deuxième partie, la stabilité de cette classe des systèmes à commutation avec des perturbations nonlinéaires a été traitée en utilisant des majorations de la solution, puis en introduisant l’approche de la fonction de Lyapunov commune. La troisième partie est consacrée au problème du consensus en présence d’interruptions de transmission d’informations où le système multi-agent en boucle fermée peut être représenté comme un système à commutation par une combinaison de modèles de systèmes linéaires à temps continu et de systèmes linéaires à temps discret. / This thesis deals with the stability analysis of switched systems that evolve on non uniform time domain by introducing the time scale theory. We are interested mainly in dynamical linear switched systems defined on particular time scale T = P{tσk ,tk+1} = ∪∞k=0[tσk, tk+1]. The studied system switches between a continuous-time dynamical subsystem on the intervals ∪∞k=0[tσk, tk+1[ and a discrete-time dynamical subsystem on instants ∪∞k=0{tk+1} (a discrete time) with a time-varying discrete step. In a first part, sufficient conditions are given to guarantee the exponential stability of this class of switched systems. Then necessary and sufficient conditions for stability are given by determining a region of exponential stability. In the second part, the stability of this class of switched systems with nonlinear uncertainties, is treated using majoration of the solution, and after that by introducing the approach of a common Lyapunov function. The third part is devoted to the consensus problem under intermittent information transmissions where the closed-loop multi-agent system can be represented as a switched system using a combination of linear continuous-time and linear discrete-time systems.
6

Convergence et stabilisation de systèmes dynamiques couplés et multi-échelles vers des équilibres sous contraintes : application à l’optimisation hiérarchique / Convergence and stabilization of coupled and multiscale dynamical systems towards constrained equilibria : application to hierarchical optimization

Noun, Nahla 20 June 2013 (has links)
Nous étudions la convergence de systèmes dynamiques vers des équilibres. En particulier, nous nous intéressons à deux types d'équilibres. D'une part, les solutions d'inéquations variationnelles sous contraintes qui interviennent aussi dans la résolution de problèmes d'optimisation hiérarchique. D'autre part l'état stable d'un système dynamique, c'est à dire l'état où l'énergie du système est nulle. Cette thèse est divisée en deux parties principales, chacune focalisée sur la recherche d'un de ces équilibres. Dans la première partie nous étudions une classe d'algorithmes explicite-implicites pour résoudre certaines inéquations variationnelles sous contraintes. Nous introduisons un algorithme proximal-gradient pénalisé, "splitting forward-backward penalty scheme". Ensuite, nous prouvons sa convergence ergodique faible vers un équilibre dans le cas général d'un opérateur maximal monotone, et sa convergence forte vers l'unique équilibre si l'opérateur est de plus fortement monotone. Nous appliquons aussi notre algorithme pour résoudre des problèmes d'optimisation sous contrainte ou hiérarchique dont les fonctions objectif et de pénalisation sont formées d'une partie lisse et d'une autre non lisse. En effet, nous démontrons la convergence faible de l'algorithme vers un optimum hiérarchique lorsque l'opérateur est le sous-différentiel d'une fonction convexe semi-continue inférieurement et propre. Nous généralisons ainsi plusieurs algorithmes connus et nous retrouvons leurs résultats de convergence en affaiblissant les hypothèses utilisées dans nombre d'entre eux.Dans la deuxième partie, nous étudions l'action d'un contrôle interne local sur la stabilisation indirecte d'un système dynamique couplé formé de trois équations d'ondes, le système de Bresse. Sous la condition d'égalité des vitesses de propagation des ondes, nous montrons la stabilité exponentielle du système. En revanche, quand les vitesses sont différentes, nous prouvons sa stabilité polynomiale et nous établissons un nouveau taux de décroissance polynomial de l'énergie. Ceci étend des résultats présents dans la littérature au sens où le contrôle est localement distribué (et non pas appliqué à tout le domaine) et nous améliorons le taux de décroissance polynomial de l'énergie pour des conditions au bord de type Dirichlet et Dirichlet-Neumann. / We study the convergence of dynamical systems towards equilibria. In particular, we are interested in two types of equilibria. On one hand solutions of constrained variational inequations that are also involved in the resolution of hierarchical optimization problems. On the other hand the stable state of a dynamical system, i.e. the state when the energy of the system is zero. The thesis is divided into two parts, each focused on one of these equilibria. In the first part, we study a class of forward-backward algorithms for solving constrained variational inequalities. We consider a splitting forward-backward penalty scheme. We prove the weak ergodic convergence of the algorithm to an equilibrium for a general maximal monotone operator, and the strong convergence to the unique equilibrium if the operator is an addition strongly monotone. We also apply our algorithm for solving constrained or hierarchical optimization problems whose objective and penalization functions are formed of a smooth and a non-smooth part. In fact, we show the weak convergence to a hierarchical optimum when the operator is the subdifferential of a closed convex proper function. We then generalize several known algorithms and we find their convergence results by weakening assumptions used in a number of them. In the second part, we study the action of a locally internal dissipation law in the stabilization of a linear dynamical system coupling three wave equations, the Bresse system. Under the equal speed wave propagation condition we show that the system is exponentially stable. Otherwise, when the speeds are different, we prove the polynomial stability and establish a new polynomial energy decay rate. This extends results presented in the literature in the sense that the dissipation law is locally distributed (and not applied in the whole domain) and we improve the polynomial energy decay rate with both types of boundary conditions, Dirichlet and Dirichlet-Neumann.
7

Filtrage robuste pour les systèmes stochastiques incertains

Halabi, Souheil 12 December 2005 (has links) (PDF)
Ce mémoire aborde la synthèse de filtres H-infine d'ordre plein et d'ordre réduit pour les systèmes stochastiques à temps continu avec bruits multiplicatifs. Les bruits considérés dans l'équation d'état et dans l'équation de mesures sont des processus de Wiener.<br /><br />Les systèmes stochastiques étudiés dans ce mémoire sont écrits sous la forme d'une équation différentielle stochastique au sens d'Itô dans lesquels la dérive et la diffusion sont linéaires ou bilinéaires. Les systèmes avec plusieurs bruits multiplicatifs et les systèmes dont les mesures sont affectées par des bruits multiplicatifs sont également traités dans ce mémoire. La conception d'une commande H-infine basée sur un observateur d'ordre réduit pour les systèmes stochastiques incertains est étudiée.<br /><br />Le critère de performance considéré est le critère H-infine du signal de perturbation vers le signal d'erreur d'estimation. La stabilité retenue pour ces systèmes stochastiques dans ce travail est la stabilité exponentielle en moyenne quadratique.<br /><br />La méthode utilisée pour trouver les matrices des filtres est basée sur l'utilisation de la théorie de Lyapunov pour les équations différentielles stochastiques, la formule d'Itô et sur la résolution des Inégalités Matricielles Affines couplées à des contraintes bilinéaires qui assurent la stabilité et la performance.
8

Quelques problèmes de stabilisation directe et indirecte d’équations d’ondes par des contrôles de type fractionnaire frontière ou de type Kelvin-Voight localisé / Some problems of direct and indirect stabilization of wave equations with locally boundary fractional damping or with localised Kelvin-Voigh

Akil, Mohammad 06 October 2017 (has links)
Cette thèse est consacrée à l’étude de la stabilisation directe et indirecte de différents systèmes d’équations d’ondes avec un contrôle frontière de type fractionnaire ou un contrôle local viscoélastique de type Kelvin-Voight. Nous considérons, d’abord, la stabilisation de l’équation d’ondes multidimensionnel avec un contrôle frontière fractionnaire au sens de Caputo. Sous des conditions géométriques optimales, nous établissons un taux de décroissance polynomial de l’énergie de système. Ensuite, nous nous intéressons à l’étude de la stabilisation d’un système de deux équations d’ondes couplées via les termes de vitesses, dont une seulement est amortie avec contrôle frontière de type fractionnaire au sens de Caputo. Nous montrons différents résultats de stabilités dans le cas 1-d et N-d. Finalement, nous étudions la stabilité d’un système de deux équations d’ondes couplées avec un seul amortissement viscoélastique localement distribué de type Kelvin-Voight. / This thesis is devoted to study the stabilization of the system of waves equations with one boundary fractional damping acting on apart of the boundary of the domain and the stabilization of a system of waves equations with locally viscoelastic damping of Kelvin-Voight type. First, we study the stability of the multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain. Second, we study the stability of the system of coupled onedimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Next, we study the stability of the system of coupled multi-dimensional wave equation with one fractional damping acting on a part of the boundary of the domain. Finally, we study the stability of the multidimensional waves equations with locally viscoelastic damping of Kelvin-Voight is applied for one equation around the boundary of the domain.
9

Fonctions presque-périodiques et équations différentielles / Almost periodic functions and differential equations

Lassoued, Dhaou 09 December 2013 (has links)
Cette thèse porte sur les équations d’évolution et s’articule autour de trois parties. Dans la première partie, on se propose de se concentrer sur le critère oscillatoire de certaines équations différentielles. Des résultats classiques sur les fonctions presque-périodiques sont rassemblés dans le premier chapitre. Le deuxième chapitre de cette thèse a pour objectif de prouver l’existence d’une solution presque-périodique de Besicovitch d’une équation différentielle de second ordre sur un espace de Hilbert. L’approche utilisée se base sur un formalisme variationnel. La deuxième partie de cette thèse traite le comportement asymptotique des problèmes de Cauchy dans le cas non autonome. Les semi-groupes et les familles d’évolution étant les outils principaux utilisés dans cette partie, le troisième chapitre introduit des résultats importants de cette théorie, notamment ceux permettant de caractériser la stabilité des semigroupes et des familles d’évolution périodiques. Dans le quatrième chapitre de cette contribution, on prouve, en utilisant une approche basée sur les semigroupes, un résultat liant la bornitude de solutions de problèmes de Cauchy périodiques et la stabilité exponentielle uniforme des familles d’évolution issues de ces problèmes. Dans une troisième partie, on focalise l’attention sur quelques résultats sur la dichotomie exponentielle comme une propriété liée au comportement asymptotique des systèmes différentiels. Quelques résultats connus sont, par suite, réunis au cinquième chapitre qui introduit brièvement la notion de dichotomie exponentielle. Dans un dernier chapitre, une caractérisation de la dichotomie exponentielle d’une famille d’évolution en termes de bornitude des solutions de problèmes de Cauchy opératoriels correspondants sera démontrée. / This PhD thesis deals with the evolution equations and is organized in three parts. The first part is devoted to the almost periodic solutions of certain differential equations. Classic results on the almost periodic functions are collected in the first chapter. The second chapter of this thesis aims to prove the existence of an almost-periodic solution of Besicovitch of a second-order differential equation on Hilbert space. The used approach is based on a variational formalism. In the second part of this thesis, we study the asymptotic behavior of Cauchy problems in the non-autonomous case. We give in the third chapter important results on semigroups and evolution families, namely, those allowing to characterize the stability of semigroups and periodic evolution families. We prove in the fourth chapter sufficient conditions for the uniform exponential stability of a strongly continuous, q-periodic evolution family acting on a complex Banach space. The last part in this work focuses the attention on some results on the exponential dichotomy as a property for the asymptotic behavior of the differential systems. Some well-known results are given in the fifth chapter which introduces briefly the concept of the exponential dichotomy. A characterization of the exponential dichotomy for evolution family in terms of boundedness of the solutions to periodic operatorial Cauchy problems will be established.
10

Observation et commande de quelques systèmes à paramètres distribués

Li, Xiaodong 09 December 2009 (has links) (PDF)
L'objectif principal de cette thèse consiste à étudier plusieurs thématiques : l'étude de l'observation et la commande d'un système de structure flexible et l'étude de la stabilité asymptotique d'un système d'échangeurs thermiques. Ce travail s'inscrit dans le domaine du contrôle des systèmes décrits par des équations aux dérivées partielles (EDP). On s'intéresse au système du corps-poutre en rotation dont la dynamique est physiquement non mesurable. On présente un observateur du type Luenberger de dimension infinie exponentiellement convergent afin d'estimer les variables d'état. L'observateur est valable pour une vitesse angulaire en temps variant autour d'une constante. La vitesse de convergence de l'observateur peut être accélérée en tenant compte d'une seconde étape de conception. La contribution principale de ce travail consiste à construire un simulateur fiable basé sur la méthode des éléments finis. Une étude numérique est effectuée pour le système avec la vitesse angulaire constante ou variante en fonction du temps. L'influence du choix de gain est examinée sur la vitesse de convergence de l'observateur. La robustesse de l'observateur est testée face à la mesure corrompue par du bruit. En mettant en cascade notre observateur et une loi de commande stabilisante par retour d'état, on souhaite obtenir une stabilisation globale du système. Des résultats numériques pertinents permettent de conjecturer la stabilité asymptotique du système en boucle fermée. Dans la seconde partie, l'étude est effectuée sur la stabilité exponentielle des systèmes d'échangeurs thermiques avec diffusion et sans diffusion. On établit la stabilité exponentielle du modèle avec diffusion dans un espace de Banach. Le taux de décroissance optimal du système est calculé pour le modèle avec diffusion. On prouve la stabilité exponentielle dans l'espace Lp pour le modèle sans diffusion. Le taux de décroissance n'est pas encore explicité dans ce dernier cas.

Page generated in 0.08 seconds