Spelling suggestions: "subject:"formule d'itô"" "subject:"formule d'õtô""
1 |
Filtrage et commande basée sur un observateur pour les systèmes stochastiques / Filtering and observer-based control for stochastic systemsBarbata, Asma 07 March 2015 (has links)
Ce mémoire de thèse traite du filtrage et de la commande des systèmes non linéaires décrits par des équations différentielles stochastiques au sens d'Itô dont la diffusion est commandée par un bruit qui intervient de manière multiplicative avec l'état. Dans ce manuscrit, nous avons cherché à relaxer les conditions de stabilité utilisées dans la littérature en employant la stabilité exponentielle presque sûre, aussi appelée stabilité exponentielle avec une probabilité de un. Un nouveau théorème sur la stabilité exponentielle presque sûre du point d'équilibre d'une classe de systèmes stochastiques non linéaires triangulaires est proposé: la stabilité de l'ensemble du système est assurée par la stabilité de chaque sous-système considéré isolément. Ce théorème est appliqué au filtrage des systèmes stochastiques avec des bruits multiplicatifs. Des conditions pour le rejet asymptotique des perturbations intervenant dans une équation différentielle stochastique avec des bruits multiplicatifs sont proposées avec un taux de convergence exponentielle presque sûre garanti. Un correcteur, par retour d’état et par retour de sortie, de type bang-bang est synthétisé pour une classe de systèmes non linéaires stochastiques avec la stabilité exponentielle presque sûre. Le lemme borné réel pour les systèmes stochastiques algébro-différentiels avec des bruits multiplicatifs est formulé, ainsi que le développement de la formule d'Itô pour ces systèmes. Un correcteur H-infini par retour de sortie est synthétisé pour ces systèmes avec la stabilité exponentielle en moyenne quadratique. Un observateur pour ces systèmes est proposé avec la stabilité exponentielle presque sûre / This thesis deals with the filtering and control of nonlinear systems described by Itô stochastic differential equations whose diffusion is controlled by a noise which is multiplied with the state vector. In this manuscript, the goal is to relax the conditions of stability used in the literature using the almost sure exponential stability, also called exponential stability with probability equal to one. A new theorem on the almost sure exponential stability of the equilibrium point of a class of triangular nonlinear stochastic systems is proposed: the stability of the whole system is ensured by the stability of each decoupled subsystem. This theorem is applied to the filtering of stochastics systems with multiplicative noises. Conditions for asymptotic rejection of perturbations occurring in a stochastic differential equation with multiplicative noises have been proposed. The considered stability is the almost sure exponential one. A bound of the Lyapunov exponent ensures the almost sure convergence rate to zero for the state of the system. A bang-bang control law is synthesized for a class of stochastic nonlinear systems in two cases: (i) state feedback and (ii) measured output feedback with an observer. The used stability is the almost sure exponential one. The bounded real lemma is developed for stochastic algebro-differential systems with multiplicative noises and the Itô formula given for thèse systems. This approach has been used for the synthesis of an H-ihfinity measured output feedback control law with the exponential mean square stability. An observer for nonlinear stochastic algebro-differential systems was proposed using the almost sure exponential stability
|
2 |
Calcul d'Itô étenduWalsh, Alexander 30 June 2011 (has links) (PDF)
Nos différents résultats consistent principalement à établir des extensions du calcul stochastique classique. Pour (X_t) processus de Markov, il s'agissait à l'origine de donner dans les quatre cas suivants, la décomposition explicite de F(X_t,t) en tant que processus de Dirichlet, sous des conditions minimum sur F fonction déterministe à valeurs réelles. Dans le premier cas, X est un processus de Lévy réel avec composante brownienne. Dans le deuxième cas X est un processus de Lévy symétrique sans composante brownienne mais admettant des temps locaux en tant que processus de Markov. Dans le troisième cas, X est un processus de Markov symétrique général sans condition d'existence de temps locaux mais F(x,t) ne dépend pas de t. Dans le quatrième cas, nous supprimons l'hypothèse de symétrie du troisième cas. Dans chacun des trois premiers cas, on obtient une formule d'Itô à la seule condition que la fonction F admette des dérivées de Radon-Nikodym d'ordre 1 localement bornées. On rappelle que dans l'hypothèse où X est une semi-martingale, la formule d'Itô classique nécessite que F soit C^2. C'est l'hypothèse que nous devons prendre dans le quatrième cas. Le premier cas excepté, chacune des formules d'Itô obtenues s'appuie sur la construction de nouvelles intégrales stochastiques par rapport à des processus aléatoires qui ne sont pas des semi-martingales.
|
3 |
Calcul stochastique via régularisation en dimension infinie avec perspectives financièresDi Girolami, Cristina 05 July 2010 (has links) (PDF)
Ce document de thèse développe certains aspects du calcul stochastique via régularisation pour des processus X à valeurs dans un espace de Banach général B. Il introduit un concept original de Chi-variation quadratique, où Chi est un sous-espace du dual d'un produit tensioriel B⊗B, muni de la topologie projective. Une attention particulière est dévouée au cas où B est l'espace des fonctions continues sur [-τ,0], τ>0. Une classe de résultats de stabilité de classe C^1 pour des processus ayant une Chi-variation quadratique est établie ainsi que des formules d'Itô pour de tels processus. Un rôle significatif est joué par les processus réels à variation quadratique finie X (par exemple un processus de Dirichlet, faible Dirichlet). Le processus naturel à valeurs dans C[-τ,0] est le dénommé processus fenêtre X_t(•) où X_t(y) = X_{t+y}, y ∈ [-τ,0]. Soit T>0. Si X est un processus dont la variation quadratique vaut [X]_t = t et h = H(X_T(•)) où H:C([-T,0])→ R est une fonction de classe C^3 Fréchet par rapport à L^2([-T,0] ou H dépend d'un numéro fini d' intégrales de Wiener, il est possible de représenter h comme un nombre réel H_0 plus une intégrale progressive du type \int_0^T \xi d^-X où \xi est un processus donné explicitement. Ce résultat de répresentation de la variable aléatoire h sera lié strictement à une fonction u:[0,T] x C([-T,0])→R qui en général est une solution d'une equation au derivées partielles en dimension infinie ayant la proprieté H_0=u(0, X_0(•)), \xi_t=Du(t, X_t(•))({0}). A certains égards, ceci généralise la formule de Clark-Ocone valable lorsque X est un mouvement brownien standard W. Une des motivations vient de la théorie de la couverture d'options lorsque le prix de l'actif soujacent n'est pas une semimartingale.
|
4 |
Filtrage robuste pour les systèmes stochastiques incertainsHalabi, Souheil 12 December 2005 (has links) (PDF)
Ce mémoire aborde la synthèse de filtres H-infine d'ordre plein et d'ordre réduit pour les systèmes stochastiques à temps continu avec bruits multiplicatifs. Les bruits considérés dans l'équation d'état et dans l'équation de mesures sont des processus de Wiener.<br /><br />Les systèmes stochastiques étudiés dans ce mémoire sont écrits sous la forme d'une équation différentielle stochastique au sens d'Itô dans lesquels la dérive et la diffusion sont linéaires ou bilinéaires. Les systèmes avec plusieurs bruits multiplicatifs et les systèmes dont les mesures sont affectées par des bruits multiplicatifs sont également traités dans ce mémoire. La conception d'une commande H-infine basée sur un observateur d'ordre réduit pour les systèmes stochastiques incertains est étudiée.<br /><br />Le critère de performance considéré est le critère H-infine du signal de perturbation vers le signal d'erreur d'estimation. La stabilité retenue pour ces systèmes stochastiques dans ce travail est la stabilité exponentielle en moyenne quadratique.<br /><br />La méthode utilisée pour trouver les matrices des filtres est basée sur l'utilisation de la théorie de Lyapunov pour les équations différentielles stochastiques, la formule d'Itô et sur la résolution des Inégalités Matricielles Affines couplées à des contraintes bilinéaires qui assurent la stabilité et la performance.
|
5 |
Modélisation financière avec des processus de Volterra et applications aux options, aux taux d'intérêt et aux risques de crédit / Financial modeling with Volterra Lévy processes and applications to options pricing, interest rates and credit risk modelingRahouli, Sami El 28 February 2014 (has links)
Ce travail étudie des modèles financiers pour les prix d'options, les taux d'intérêts et le risque de crédit, avec des processus stochastiques à mémoire et comportant des discontinuités. Ces modèles sont formulés en termes du mouvement Brownien fractionnaire, du processus de Lévy fractionnaire ou filtré (et doublement stochastique) et de leurs approximations par des semimartingales. Leur calcul stochastique est traité au sens de Malliavin, et des formules d'Itô sont déduites. Nous caractérisons les probabilités risque neutre en termes de ces processus pour des modèles d'évaluation d'options de type de Black-Scholes avec sauts. Nous étudions également des modèles de taux d'intérêts, en particulier les modèles de Vasicek, de Cox-Ingersoll-Ross et de Heath-Jarrow-Morton. Finalement nous étudions la modélisation du risque de crédit / This work investigates financial models for option pricing, interest rates and credit risk with stochastic processes that have memory and discontinuities. These models are formulated in terms of the fractional Brownian motion, the fractional or filtered Lévy process (also doubly stochastic) and their approximations by semimartingales. Their stochastic calculus is treated in the sense of Malliavin and Itô formulas are derived. We characterize the risk-neutral probability measures in terms of these processes for options pricing models of Black-Scholes type with jumps. We also study models of interest rates, in particular the models of Vasicek, Cox-Ingersoll-Ross and Heath-Jarrow-Morton. Finally we study credit risk models
|
6 |
Des matrices de Pauli aux bruits quantiquesPautrat, Yan 04 June 2003 (has links) (PDF)
Depuis sa première définition par Hudson et Parthasarathy en 1984, l'intégration stochastique quantique offre un outil puissant pour la description de certaines évolutions en physique quantique. De nombreuses questions restent ouvertes cependant, en particulier dans le domaine de la représentabilité intégrale des opérateurs. La définition récente par Attal d'une méthode complètement explicite de l'approximation de l'espace de Fock usuel par un analogue discret a justifié l'intérêt d'une bonne connaissance du calcul stochastique quantique à temps discret. Nous définissons rigoureusement un tel calcul stochastique et obtenons une caractérisation des opérateurs admettant des représentations intégrales ou des représentations sous la forme de noyau de Maassen-Meyer, avec des expressions explicites dans les deux cas. Ces résultats nous permettent de préciser complètement le lien entre le calcul à temps discret et le calcul à temps continu et en particulier de montrer que la formule d'Itô quantique de composition des intégrales se déduit rigoureusement de relations de commutation, par exemple des relations de commutation entre matrices de Pauli. Nous appliquons ensuite nos résultats pour obtenir une caractérisation, dans l'espace de Fock usuel, des opérateurs qui sont représentables en intégrales stochastiques quantiques parmi les classes fondamentales que sont les opérateurs de seconde quantification et de seconde quantification différentielle. Enfin, nous utilisons ces techniques pour obtenir des résultats de convergence de solutions d'équations aux différences vers des équations différentielles stochastiques quantiques. Ces résultats nous permettent de montrer qu'une évolution en mécanique quantique obtenue par des interactions répétées est déterminée, à la limite, par une équation de Langevin quantique. Cette équation de Langevin décrit un couplage entre un ``petit système'' et un ``réservoir'', ce réservoir et les coefficients de l'équation se déduisant explicitement de l'interaction que l'on répète. Ces résultats permettent en particulier d'obtenir une description rigoureuse des mesures en continu et des approximations de ``coarse graining'' en optique quantique.
|
7 |
Utilités Progressives Dynamiques.M'Rad, Mohamed 19 October 2009 (has links) (PDF)
En 2002, Marek Musiela et Thaleia Zariphopoulo ont introduit la notion de {\em forward utility}, c'est à dire une utilité dynamique, progressive, cohérente avec un marché financier donné. On peut voir ce processus comme un champ aléatoire $U(t,x)$ adapté à l'information disponible, qui a chaque instant est une utilité standard (donc en particulier à la date $0$, compatible avec une famille de stratégies données $(X^{\pi})$ au sens où pour tout $t,h>0$, $ \mathbb{E}(U(t+h,X^{\pi}_{t+h})|\mathcal{F}_t)\leq U(t,X^{\pi}_t)$ et il existe un portefeuille optimal $X^*$ pour lequel l'inégalité est une égalité.\\ Les auteurs ont fait plusieurs articles sur ce sujet, montrant en particulier comment les utilités classiques, puissance, exponentielle, etc doivent être modifiées pour être des utilités dynamique progressives. Une attention limitée a été portée à l'univers d'investissement. \noindent Dans mon travail de thèse, je considère un cadre beaucoup plus général. En effet, le marché est incomplet dans le sens où un investisseur est contraint, à chaque date $t\ge 0$, de choisir ces stratégies admissibles dans des cones convexes fermés, adaptés $\K_t (X_t)$ dépendent du niveau de sa richesse $X_t$. Je considère par la suite que les champs aléatoires $U(t,x)$ évoluent selon la dynamique \begin{equation}\label{eq:champ} dU(t,x)=\beta(t,x)+\Gamma(t,x) dW_t,~U(0,.)=u(.) (\text{donnée}) \end{equation} Comme dans l'optimisation classique, (dite rétrograde puisqu'on reconstruit l'information à partir de la fin), %je montre que le terme %$\beta(t,x)$ contient, contient nécéssairement, un terme de type hamiltonien classique %modifié par la présence de la dérivée de la volatilité %$\Gamma(t,x)$ de l'utilité progressive. Et par conséquent toute utilité progressive qui % satisfait les hypothèses de régularités du lemme d'Itô-Ventzell % satisfait je me propose d'étudier les équations de type Hamilton-Jacobi-Bellman que satisfait une utilités progressive $u(t,x)$. Pour mener cette étude, j'utilise une formule d'Itô généralisée apellée la formule de Ventzell-Friedlin, qui permet d'établir la décomposition de type Itô de la composée d'un champ aléatoire avec un processus d'Itô. Je montre alors que le terme $\beta(t,x)$ contient, nécéssairement, un terme de type hamiltonien classique modifié par la présence de la dérivée de la volatilité $\Gamma(t,x)$ de l'utilité progressive. Et par conséquent toute utilité progressive qui satisfait les hypothèses de régularités du lemme d'Itô-Ventzell satisfont l' équation différentielle stochastique suivante \begin{equation}\label{EDPSU} dU(t,x)=\Big\{-xU'_{x}\, r_t dt+ \frac{1}{2U''_{xx}(t,x)}\|\prod_{\K_t(x)\sigma_t}\big(U'_{x}(t,x) \eta_t+\Gamma'_x(t,x)\big) \|^2\Big\}(t,x)\,dt\>+\Gamma(t,x)\,dW_t. \end{equation} avec comme portefeuille optimal $X^*$ le processus associé à la stratégie $\pi^*$ donnée par \begin{equation} x\pi^*(t,x)\sigma_t=- \frac{1}{U''_{xx}(t,x)}\|\prod_{\K_t(x)\sigma_t}\big(U'_{x}(t,x) \eta_t+\Gamma'_x(t,x)\big)(t,x) \end{equation} \noindent où $r$ est le taux court, $\eta$ la prime de marché, $\sigma$ la matrice de variance covariance des actifs et $ \prod_{\K_t(x)\sigma_t}$ désigne l'opérateur de projection sur le cône $\K_t(x)\sigma_t$. \\ Ce point de vue permet de vérifier que le champ aléatoire, s'il existe est compatible avec l'univers d'investissement. Cependant, la question de la convexité et de la monotonie est complexe a priori, car il n'existe pas de théorèmes de comparaison pour les équations progressives (qui sont {\em forward}), contrairement au cas des équations rétrogrades. La question de l'interprétation et du rôle de la volatilité s'avère alors être centrale dans cette étude. Contrairement au cadre général que je considère ici, M.Musiela et T.Zariphopoulo, puis C.Rogers et al se sont restreint au cas où la volatilité de l'utilité est identiquement nulle. Le processus progressif $u(t,x)$ est alors une fonction déterministe satisfaisant une EDP non linéaire, que les auteurs ont transformé en solution harmonique espace temps de l'équation de la chaleur. \\ Mon choix a été d'étudire la question de la volatilité par des techniques de changement de numéraire; ainsi, je montre la stabilité de la notion d'utilité progressive par changement de numéraire. L'avantage considérable de cette technique, comparée à la méthode classique, % Comme dans le cas % classique, le problème est compliqué par le fait que l'espace des % contraites n'est pas invariant par changement de numéraire. est le fait qu'elle permet de se ramener toujours à un marché "martingale" ($r=0$ et $\eta=0$), ce qui simplifie considérablement les équations et les calculs. La dérivée de la volatilité apparaît alors comme une prime de risque instantanée que le marché introduit, et qui dépend du niveau de la richesse de l'investisseur. Ce point de vue nouveau permet de répondre à la question de l'interprétation de la volatilité de l'utilité. Dans la suite, j'étudie le problème dual et je montre que la transformée de {\em Fenchel} $\tU$ de la fonction concave $U(t,x)$ est un champ markovien lui aussi satisfaisant la dynamique \begin{eqnarray}\label{EDPSDuale'} d\tilde{U}(t,y)=\left[\frac{1}{2\tU_{yy}''}(\|\tilde{\Gamma}'\|^2-\|\prod_{\K_t(-\tU_y'(t,y))\sigma_t}(\tilde{\Gamma}^{'}_y-y\eta_t)\|^2) +y\tU_{y}' r_t\right](t,y)dt +\tilde{\Gamma}(t,y)dW_t,~~\tilde{\Gamma}(t,y)=\Gamma(t,\tU_y'(t,y)). \end{eqnarray} À partir de ce résultat je montre que le problème dual admet une unique solution $Y^*$ dans la volatilté $\nu^*$ est donnée par \begin{equation} y\nu^*(t,y)= -\frac{1}{\tU_{yy}''}\Big(\tilde{\Gamma}'+y\eta_t-\prod_{\K_t(-\tU_y')\sigma_t}(\tilde{\Gamma}^{'}_y-y\eta_t)\Big)(t,y). \end{equation} \noindent Ce ci permettra d'établir les identités clé suivantes: \begin{eqnarray} &Y^*(t,(U_x')^{-1}(0,x))=U'_x(t,X^*(t,x)) \label{A}\\ &(\Gamma'_x+U'_x\eta)(t,x)=(xU''(t,x)\pi^*(t,x)\sigma_t+\nu^*(U_x'(t,x))\label{B}. \end{eqnarray} % Remarquons que le terme $(\Gamma'_x+U'_x\eta)$ se décompose de manière unique sous forme % de sa projection sur le cone $\K\sigma$, qui est la stratégie optimale, et la projection sur le cone dual $\K^* \sigma$, % qui est la volatilité du processus optimal dual. Mais notre but est deux termes projétés su comme la projection % Á partir de la première identité nous savons que $U'_x(t,X^*(t,x))$ n'est autre que le processus optimal dual %Á ce stade rapellons que le but de cette étude est de carracteriser les utilités progressives. La question par la suite est la suivante: peut-on caractériser l'utilité $U(t,x)$ pour tout $x>0$ à partir de la première identité? Ceci peut paraître trop demander car nous cherchons à caractériser le champ $U$ connaissant seulement son comportement le long de l'unique trajectoire optimale $X^*$. Cependant, la réponse à cette question s'avère être positive et assez simple. En effet, notons par $\Y(t,x):=Y^*(t,(U_x')^{-1}(0,x))$, et supposons que le flot stochastique $X^*$ soit inversible, $\X$ désigne son inverse. Alors, en inversant dans (\ref{A}), je déduis que $U_x'(t,x)=\Y(t,\X(t,x))$. En intégrant par rapport à $x$, j'obtiens que $U(t,x)=\int_0^x\Y(t,\X(t,z))dz$, ce qui prouve le théorème suivant: \begin{theo} Sous des hypothèses de régularités et d'inversion du flot $X^*$, les processus $U$ définis par $U(t,x)=\int_0^x\Y(t,\X(t,z))dz$ sont des utilités progressives solutions de l'EDP stochastique (\ref{EDPSU}). \end{theo} % %\noindent Inversement, je montre le théorème d'EDP stochastique suivant: \begin{theo} Soit $U$ un champ aléatoire solutions de l'EDP stochastique (\ref{EDPSU}). En utilisant la décompostion (\ref{B}), si les EDS suivantes \begin{eqnarray*} & dX^*_t(x)=X^*_t(x)(r_tdt+\pi^*(t,X^*_t(x))\sigma_t(dW_t+\eta_tdt)),X^*_0(x)=x ~\\ & dY^*_t(y)=Y^*_t(y)(-r_tdt+\nu^*(t,Y^*_t(y))dW_t),~Y^*_0(y)=y \end{eqnarray*} admettent des solutions fortes unique et monotonnes, alors, en notant par $ \Y(t,x):=Y^*(t,(U_x')^{-1}(0,x))$ et par $\X$ le flot inverse de $X$, on obtient que $U(t,x)= \int_0^x\Y(t,\X(t,z))dz$. Si de plus $X^*$ et $Y^*$ sont croissants, $U$ est concave. \end{theo} \noindent %Dans ce travail, je considère toujours un marché incomplet, Dans une seconde partie de ce travail, je me place dans un cadre beaucoup plus général dans le sens où les actifs sont supposés être cadlag locallement bornés, et par conséquent la filtration n'est plus une filtration brownienne. Je remplace les contraintes de type cône convexe par des contraintes plus générales de type ensemble convexe. Le but de cette partie est de caractériser toutes les utilités progressives avec le minimum d'hypothèses, notamment avec moins d'hypothèses de régularités sur les champs aléatoires $U$. Je ne suppose plus que $U$ est deux fois différentiable et par conséquent je ne peut plus appliquer le lemme d'Itô-Ventzell. L'approche est alors différente: je commence par établir des conditions d'optimalité sur le processus de richesses optimale ainsi que le processus optimal dual, et ce en utilisant des méthodes d'analyse. En utilisant ces résultats je démontre, par des éléments d'analyse, la convexité ainsi que les conditions d'optimalités que toutes les utilités progressives générant une richesse croissante est de la forme $\int_0^x\Y(t,\X(t,z))dz$ avec $\Y$ : $\Y X$ est une surmartingale pour toute richesse $X$ et une martingale si $X=X^*$.
|
Page generated in 0.0498 seconds