• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 9
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electron orbital angular momentum: preparation, application and measurement

Harvey, Tyler 06 September 2017 (has links)
The electron microscope is an ideal tool to prepare an electron into a specified quantum state, entangle that state with states in a specimen of interest, and measure the electron final state to indirectly gain information about the specimen. There currently exist excellent technologies to prepare both momentum eigenstates (transmission electron microscopy) and position eigenstates (scanning transmission electron microscopy) in a narrow band of energy eigenstates. Similarly, measurement of the momentum and position final states is straightforward with post-specimen lenses and pixelated detectors. Measurement of final energy eigenstates is possible with magnetic electron energy loss spectrometers. In 2010 and 2011, several groups independently showed that it was straightforward to prepare electrons into orbital angular momentum eigenstates. This disseratation represents my contributions to the toolset we have to control these eigenstates: preparation, application (interaction with specimen states), and measurement. My collaborators and I showed that phase diffraction gratings efficiently produce electron orbital angular momentum eigenstates; that control of orbital angular momentum can be used to probe chirality and local magnetic fields; and that there are several routes toward efficient measurement.
2

Experiments with Generalized Quantum Measurements and Entangled Photon Pairs

Biggerstaff, Devon January 2009 (has links)
This thesis describes a linear-optical device for performing generalized quantum measurements on quantum bits (qubits) encoded in photon polarization, the implementation of said device, and its use in two diff erent but related experiments. The device works by coupling the polarization degree of freedom of a single photon to a `mode' or `path' degree of freedom, and performing a projective measurement in this enlarged state space in order to implement a tunable four-outcome positive operator-valued measure (POVM) on the initial quantum bit. In both experiments, this POVM is performed on one photon from a two-photon entangled state created through spontaneous parametric down-conversion. In the fi rst experiment, this entangled state is viewed as a two-qubit photonic cluster state, and the POVM as a means of increasing the computational power of a given resource state in the cluster-state model of quantum computing. This model traditionally achieves deterministic outputs to quantum computations via successive projective measurements, along with classical feedforward to choose measurement bases, on qubits in a highly entangled resource called a cluster state; we show that `virtual qubits' can be appended to a given cluster by replacing some projective measurements with POVMs. Our experimental demonstration fully realizes an arbitrary three-qubit cluster computation by implementing the POVM, as well as fast active feed-forward, on our two-qubit photonic cluster state. Over 206 diff erent computations, the average output delity is 0.9832 +/- 0.0002; furthermore the error contribution from our POVM device and feedforward is only of order 10^-3, less than some recent thresholds for fault-tolerant cluster computing. In the second experiment, the POVM device is used to implement a deterministic protocol for remote state preparation (RSP) of arbitrary photon polarization qubits. RSP is the act of preparing a quantum state at a remote location without actually transmitting the state itself. We are able to remotely prepare 178 diff erent pure and mixed qubit states with an average delity of 0.995. Furthermore, we study the the fidelity achievable by RSP protocols permitting only classical communication, without shared entanglement, and compare the resulting benchmarks for average fidelity against our experimental results. Our experimentally-achieved average fi delities surpass the classical thresholds whenever classical communication alone does not trivially allow for perfect RSP.
3

Experiments with Generalized Quantum Measurements and Entangled Photon Pairs

Biggerstaff, Devon January 2009 (has links)
This thesis describes a linear-optical device for performing generalized quantum measurements on quantum bits (qubits) encoded in photon polarization, the implementation of said device, and its use in two diff erent but related experiments. The device works by coupling the polarization degree of freedom of a single photon to a `mode' or `path' degree of freedom, and performing a projective measurement in this enlarged state space in order to implement a tunable four-outcome positive operator-valued measure (POVM) on the initial quantum bit. In both experiments, this POVM is performed on one photon from a two-photon entangled state created through spontaneous parametric down-conversion. In the fi rst experiment, this entangled state is viewed as a two-qubit photonic cluster state, and the POVM as a means of increasing the computational power of a given resource state in the cluster-state model of quantum computing. This model traditionally achieves deterministic outputs to quantum computations via successive projective measurements, along with classical feedforward to choose measurement bases, on qubits in a highly entangled resource called a cluster state; we show that `virtual qubits' can be appended to a given cluster by replacing some projective measurements with POVMs. Our experimental demonstration fully realizes an arbitrary three-qubit cluster computation by implementing the POVM, as well as fast active feed-forward, on our two-qubit photonic cluster state. Over 206 diff erent computations, the average output delity is 0.9832 +/- 0.0002; furthermore the error contribution from our POVM device and feedforward is only of order 10^-3, less than some recent thresholds for fault-tolerant cluster computing. In the second experiment, the POVM device is used to implement a deterministic protocol for remote state preparation (RSP) of arbitrary photon polarization qubits. RSP is the act of preparing a quantum state at a remote location without actually transmitting the state itself. We are able to remotely prepare 178 diff erent pure and mixed qubit states with an average delity of 0.995. Furthermore, we study the the fidelity achievable by RSP protocols permitting only classical communication, without shared entanglement, and compare the resulting benchmarks for average fidelity against our experimental results. Our experimentally-achieved average fi delities surpass the classical thresholds whenever classical communication alone does not trivially allow for perfect RSP.
4

Additional degrees of freedom associated with position measurements in non-commutative quantum mechanics

Rohwer, Christian M. 12 1900 (has links)
Thesis (MSc (Physics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Due to the minimal length scale induced by non-commuting co-ordinates, it is not clear a priori what is meant by a position measurement on a non-commutative space. It was shown recently in a paper by Scholtz et al. that it is indeed possible to recover the notion of quantum mechanical position measurements consistently on the non-commutative plane. To do this, it is necessary to introduce weak (non-projective) measurements, formulated in terms of Positive Operator-Valued Measures (POVMs). In this thesis we shall demonstrate, however, that a measurement of position alone in non-commutative space cannot yield complete information about the quantum state of a particle. Indeed, the aforementioned formalism entails a description that is non-local in that it requires knowledge of all orders of positional derivatives through the star product that is used ubiquitously to map operator multiplication onto function multiplication in non-commutative systems. It will be shown that there exist several equivalent local descriptions, which are arrived at via the introduction of additional degrees of freedom. Consequently non-commutative quantum mechanical position measurements necessarily confront us with some additional structure which is necessary (in addition to position) to specify quantum states completely. The remainder of the thesis, based in part on a recent publication (\Noncommutative quantum mechanics { a perspective on structure and spatial extent", C.M. Rohwer, K.G. Zloshchastiev, L. Gouba and F.G. Scholtz, J. Phys. A: Math. Theor. 43 (2010) 345302) will involve investigations into the physical interpretation of these additional degrees of freedom. For one particular local formulation, the corresponding classical theory will be used to demonstrate that the concept of extended, structured objects emerges quite naturally and unavoidably there. This description will be shown to be equivalent to one describing a two-charge harmonically interacting composite in a strong magnetic eld found by Susskind. It will be argued through various applications that these notions also extend naturally to the quantum level, and constraints will be shown to arise there. A further local formulation will be introduced, where the natural interpretation is that of objects located at a point with a certain angular momentum about that point. This again enforces the idea of particles that are not point-like. Both local descriptions are convenient, in that they make explicit the additional structure which is encoded more subtly in the non-local description. Lastly we shall argue that the additional degrees of freedom introduced by local descriptions may also be thought of as gauge degrees of freedom in a gauge-invariant formulation of the theory. / AFRIKAANSE OPSOMMING: As gevolg van die minimum lengteskaal wat deur nie-kommuterende ko ordinate ge nduseer word is dit nie a priori duidelik wat met 'n posisiemeting op 'n nie-kommutatiewe ruimte bedoel word nie. Dit is onlangs in 'n artikel deur Scholtz et al. getoon dat dit wel op 'n nie-kommutatiewe vlak moontlik is om die begrip van kwantummeganiese posisiemetings te herwin. Vir hierdie doel benodig ons die konsep van swak (nie-projektiewe) metings wat in terme van 'n positief operator-waardige maat geformuleer word. In hierdie tesis sal ons egter toon dat 'n meting van slegs die posisie nie volledige inligting oor die kwantumtoestand van 'n deeltjie in 'n niekommutatiewe ruimte lewer nie. Ons formalisme behels 'n nie-lokale beskrywing waarbinne kennis oor alle ordes van posisieafgeleides in die sogenaamde sterproduk bevat word. Die sterproduk is 'n welbekende konstruksie waardeur operatorvermenigvuldiging op funksievermenigvuldiging afgebeeld kan word. Ons sal toon dat verskeie ekwivalente lokale beskrywings bestaan wat volg uit die invoer van bykomende vryheidsgrade. Dit beteken dat nie-kommutatiewe posisiemetings op 'n natuurlike wyse die nodigheid van bykomende strukture uitwys wat noodsaaklik is om die kwantumtoestand van 'n sisteem volledig te beskryf. Die res van die tesis, wat gedeeltelik op 'n onlangse publikasie (\Noncommutative quantum mechanics { a perspective on structure and spatial extent", C.M. Rohwer, K.G. Zloshchastiev, L. Gouba and F.G. Scholtz, J. Phys. A: Math. Theor. 43 (2010) 345302) gebaseer is, behels 'n ondersoek na die siese interpretasie van hierdie bykomende strukture. Ons sal toon dat vir 'n spesi eke lokale formulering die beeld van objekte met struktuur op 'n natuurlike wyse in die ooreenstemmende klassieke teorie na vore kom. Hierdie beskrywing is inderdaad ekwivalent aan die van Susskind wat twee gelaaide deeltjies, gekoppel deur 'n harmoniese interaksie, in 'n sterk magneetveld behels. Met behulp van verskeie toepassings sal ons toon dat hierdie interpretasie op 'n natuurlike wyse na die kwantummeganiese konteks vertaal waar sekere dwangvoorwaardes na vore kom. 'n Tweede lokale beskrywing in terme van objekte wat by 'n sekere punt met 'n vaste hoekmomentum gelokaliseer is sal ook ondersoek word. Binne hierdie konteks sal ons weer deur die begrip van addisionele struktuur gekonfronteer word. Beide lokale beskrywings is gerie ik omdat hulle hierdie bykomende strukture eksplisiet maak, terwyl dit in die nie-lokale beskrywing deur die sterproduk versteek word. Laastens sal ons toon dat die bykomende vryheidsgrade in lokale beskrywings ook as ykvryheidsgrade van 'n ykinvariante formulering van die teorie beskou kan word.
5

Measuring quantum systems with a tunnel junction

Wabnig, Joachim January 2006 (has links)
<p>This thesis is concerned with employing the statistics of charge transfer in a conductor as a tool for quantum measurement. The physical systems studied are electronic devices made by nanoscale manufacturing techniques. In this context quantum measurement appears not as a postulate, but as physical process. In this thesis I am considering a quantum system, in particular a qubit or a nanomechanical resonator, interacting with a tunnel junction. The effect of coupling a quantum system to a tunnel junction is twofold: The state of the quantum system will be changed and there will be information about the quantum system in the statistics of charge transfer of the tunnel junction. As the first example a quantum measurement process of a qubit is considered. A common description of the system and charge dynamics is found by introducing a new quantity, the charge specific density matrix. By deriving and solving a Markovian master equation for this quantity the measurement process is analyzed. The measurement is shown to be a dynamical process, where correlations between the initial state of the qubit and the number of charges transferred in the tunnel junction arise on a typical timescale, the measurement time. As another example of a quantum system a nanomechanical oscillator is considered. It is found, that the biased tunnel junction, acting as a non-equilibrium environment to the oscillator, increases the temperature of the oscillator from its thermal equilibrium value. The current in the junction is modulated by the interaction with the oscillator, but the influence vanishes for bias voltages smaller than the oscillator frequency. For an asymmetric junction and non-vanishing oscillator momentum a current is shown to flow through the junction even at zero bias. The current noise spectrum induced by the oscillator in the tunnel junction consists of a noise floor and a peaked structure with peaks at zero frequency, the oscillator frequency and double the oscillator frequency. The peak heights are dependent on the coupling strength between oscillator and junction, the occupation number of the oscillator, the bias voltage and the junction temperature. I show how the peak height can be used as a measure of the oscillator temperature, demonstrating that the noise of a tunnel junction can be used for electronic thermometry of a nanomechanical oscillator.</p>
6

On von Neumann's hypothesis of collapse of the wave function and quantum Zeno paradox in continuous measurement

Kim, Dongil 06 July 2011 (has links)
The experiment performed by Itano, Heinzen, Bollinger and Wineland on the quantum Zeno effect is analyzed in detail through a quantum map derived by conventional quantum mechanics based on the Schrodinger equation. The analysis shows that a slight modification of their experiment leads to a significantly different result from the one that is predicted through von Neumann's hypothesis of collapse of the wave function in the quantum measurement theory. This may offer a possibility of an experimental test of von Neumann's quantum measurement theory. / text
7

Measuring quantum systems with a tunnel junction

Wabnig, Joachim January 2006 (has links)
This thesis is concerned with employing the statistics of charge transfer in a conductor as a tool for quantum measurement. The physical systems studied are electronic devices made by nanoscale manufacturing techniques. In this context quantum measurement appears not as a postulate, but as physical process. In this thesis I am considering a quantum system, in particular a qubit or a nanomechanical resonator, interacting with a tunnel junction. The effect of coupling a quantum system to a tunnel junction is twofold: The state of the quantum system will be changed and there will be information about the quantum system in the statistics of charge transfer of the tunnel junction. As the first example a quantum measurement process of a qubit is considered. A common description of the system and charge dynamics is found by introducing a new quantity, the charge specific density matrix. By deriving and solving a Markovian master equation for this quantity the measurement process is analyzed. The measurement is shown to be a dynamical process, where correlations between the initial state of the qubit and the number of charges transferred in the tunnel junction arise on a typical timescale, the measurement time. As another example of a quantum system a nanomechanical oscillator is considered. It is found, that the biased tunnel junction, acting as a non-equilibrium environment to the oscillator, increases the temperature of the oscillator from its thermal equilibrium value. The current in the junction is modulated by the interaction with the oscillator, but the influence vanishes for bias voltages smaller than the oscillator frequency. For an asymmetric junction and non-vanishing oscillator momentum a current is shown to flow through the junction even at zero bias. The current noise spectrum induced by the oscillator in the tunnel junction consists of a noise floor and a peaked structure with peaks at zero frequency, the oscillator frequency and double the oscillator frequency. The peak heights are dependent on the coupling strength between oscillator and junction, the occupation number of the oscillator, the bias voltage and the junction temperature. I show how the peak height can be used as a measure of the oscillator temperature, demonstrating that the noise of a tunnel junction can be used for electronic thermometry of a nanomechanical oscillator.
8

Conditional many-body dynamics and quantum control of ultracold fermions and bosons in optical lattices coupled to quantized light

Mazzucchi, Gabriel January 2016 (has links)
We study the atom-light interaction in the fully quantum regime, with the focus on off-resonant light scattering into a cavity from ultracold atoms trapped in an optical lattice. Because of the global coupling between the atoms and the light modes, observing the photons leaking from the cavity allows the quantum nondemolition (QND) measurement of quantum correlations of the atomic ensemble, distinguishing between different quantum states. Moreover, the detection of the photons perturbs the quantum state of the atoms via the so-called measurement backaction. This effect constitutes an unusual additional dynamical source in a many-body strongly correlated system and it is able to efficiently compete with its intrinsic short-range dynamics. This competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period, without the need of single site addressing. We demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, breakup and protection of strongly interacting fermion pairs. We show that measurement backaction can be exploited for realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves and we demonstrate that such long-range correlations cannot be realized with local addressing. Finally, we describe how to stabilize these emerging phases with the aid of quantum feedback. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems and it is easily extendable to other systems promising for quantum technologies.
9

Thermodynamics of quantum open systems : applications in quantum optics and optomechanics / Thermodynamique des systèmes quantiques ouverts : applications en optique quantique et en optomécanique

Elouard, Cyril 04 July 2017 (has links)
La thermodynamique a été développée au XIXe siècle pour décrire la physique des moteurs et autres machines thermiques macroscopiques. Depuis lors, le progrès des nanotechnologies a rendu nécessaire d'étendre ces lois, initialement pensées pour des systèmes classiques, aux systèmes obéissant à la mécanique quantique. Durant cette thèse, j'ai mis en place un formalisme pour étudier la thermodynamique stochastique des systèmes quantiques, dans lequel la mesure quantique occupe une place centrale: à l'instar du bain thermique de la thermodynamique statistique classique, la mesure est ici la source première d'aléatoire dans la dynamique. Dans un premier temps, j'ai étudié la mesure projective comme une transformation thermodynamique à part entière. J'ai montré que la mesure cause un changement incontrôlé de l'énergie du système quantique étudié, que j'ai appelé chaleur quantique, ainsi qu'une production d'entropie. Comme application de ces concepts, j'ai proposé un moteur qui extrait du travail à partir des fluctuations quantiques induites par la mesure. Ensuite, j'ai étudié les mesures généralisées, ce qui a permis de décrire des systèmes quantiques ouverts. J'ai défini les notions de travail, de chaleur, et de production d'entropie pour une réalisation unique d'une transformation thermodynamique, et retrouvé que ces quantités obéissent à des théorèmes de fluctuation. Ce formalisme m'a permis d'analyser le comportement thermodynamique de la situation canonique de l'optique quantique : un atome à deux niveaux en couplé à un laser et au vide électromagnétique. Enfin, j'ai étudié une plate-forme prometteuse pour tester la thermodynamique d'un Qubit : un système hybride optomécanique.Le formalisme développé dans cette thèse peut être d'un grand intérêt pour la communauté de thermodynamique quantique car il permet de caractériser les performances des machines thermiques quantiques et de les comparer à leurs analogues classiques. En outre, en caractérisant la mesure quantique comme un processus thermodynamique, il ouvre la voie à de nouveaux types de machines thermiques, exploitant d'une manière inédite les spécificités du monde quantique. / Thermodynamics was developed in the XIXth century to provide a physical description to engines and other macroscopic thermal machines. Since then, progress in nanotechnologies urged to extend these formalism, initially designed for classical systems, to the quantum world. During this thesis, I have built a formalism to study the stochastic thermodynamics of quantum systems, in which quantum measurement plays a central role : like the thermal reservoir of standard stochastic thermodynamics, it is the primary source of randomness in the system's dynamics. I first studied projective measurement as a thermodynamic process. I evidenced that measurement is responsible for an uncontroled variation of the system's energy that I called quantum heat, and also a production of entropy. As a proof of concept, I proposed an engine extracting work from the measurement-induced quantum fluctuations. Then, I extended this formalism to generalized measurements, which allowed to describe open quantum systems (i.e. in contact with reservoirs). I defined work, heat and entropy production for single realizations of thermodynamic protocols, and retrieved that these quantities obey fluctuation theorems. I applied this formalism to the canonical situation of quantum optics, i.e. a Qubit coupled to a laser and a the vacuum. Finally, I studied a promising platform to test Qubit's thermodynamics: a hybrid optomechanical system.The formalism developed in this thesis could be of interest for the quantum thermodynamics community as it enables to characterize quantum heat engines and compare their performances to their classical analogs. Furthermore, as it sets quantum measurement as a thermodynamic process, it pave the ways to a new kind of thermodynamic machines, exploiting the specificities of quantum realm in an unprecedented way.
10

On the Measurement of Quantum Work: Operational Aspects

Beyer, Konstantin 25 July 2023 (has links)
Work is one of the cornerstones of classical thermodynamics. However, a direct transfer of this concept to quantum systems has proved problematic, especially for non-equilibrium processes. Unlike in the classical case, quantum work cannot be defined unambiguously. Depending on the specific setting and the imposed assumptions, different definitions are well motivated. In particular, in quantum thermodynamics, a clear distinction must be made between the measurement, storage, and use of work, since these three facets of the concept are not necessarily compatible with each other. The present thesis is mainly concerned with the measurement aspect. With the help of illustrative scenarios several approaches to quantum work measurements, their advantages and drawbacks are discussed. The focus will be on the question to what extent quantumness plays a decisive role in such scenarios, both in a qualitative and quantitative sense. Based on the gedankenexperiment of a Szilárd machine a criterion is proposed which can be used to verify genuine quantum correlations between the work medium in a heat engine and its thermal environment. In a Szilárd scenario a Maxwell's demon determines the state of the work medium and uses this information to extract work. We split this model into a bipartite setting. The demon only has access to the environment and, thus, can only indirectly measure the state of the work medium. By sharing the acquired information with another agent, the latter can extract work. The question of the quantumness of the experiment can then be reduced to the question of the maximum attainable work in the context of a suitable quantum steering scenario. For the constructed setting a bound for the work output achievable for classical correlations between the engine and the environment is derived. Work extraction beyond this classical limit thus proves the quantum nature of the machine. The verification of non-classical correlations by means of quantum steering is motivated by the fact that such a scenario reflects the typical asymmetry of a thermodynamic setup. While the machine itself is considered to be controllable and characterized in detail, no requirements are imposed on the correlated environment and the measurements performed on it. Consequently, this verification of a truly quantum heat engine is semi-device-independent. In a second scenario, the compatibility of average work and work fluctuations in a driven system is discussed. Fluctuation theorems play an important role in classical non-equilibrium thermodynamics. The best-known example is the Jarzynski equality. This equation establishes a connection between the free energy difference of two equilibrium states and the fluctuating work measured in a non-equilibrium process. A transfer of the Jarzynski equality to quantum systems succeeds most simply if the work definition is based on a so-called two-point measurement scheme. This approach determines the work as the difference of two projective energy measurements. The disadvantage of this definition is the unavoidable disturbance of the quantum state by the measurement, which makes a determination of the correct average work impossible. By means of a generalized two-point measurement scheme, it is shown how this contradiction between fluctuating and average work can be overcome. The approach is based on the concept of joint measurability. Unsharp measurements with a smaller disturbance of the quantum state can be measured jointly and allow for the determination of the correct average work. Nevertheless, the connection between measured fluctuations and the change of free energy can be preserved by means of a modified Jarzynski equality, as elucidated in this thesis. Even though the two-point measurement scheme - both in its projective form and in the generalized variant presented in this thesis - satisfies a Jarzynski equality, the operationality and the associated experimental significance are to be assessed differently than in the classical case. In classical thermodynamics, the Jarzynski relation can be used practically to determine, for example, the change of free energy in RNA molecules. However, it is crucial for such an experiment that the non-equilibrium work can actually be measured without requiring detailed knowledge of the system under consideration. In contrast, the two-point measurement scheme defines work as the energy difference of the system between the beginning and the end of the process. Crucially, for the measurement of these energies the Hamiltonians have to be known and the free energy difference could therefore be calculated directly from this knowledge without reference to the Jarzynski equality. Thus, the operationality of the quantum Jarzynski relation differs fundamentally from its classical counterpart. In this thesis we develop a measurement scheme which, in principle, allows us to employ a quantum version of the Jarzynski equation without knowledge of the Hamiltonians. The crucial point is to include the apparatus that drives the system out of equilibrium in the quantum picture and to define the work measurement on that very apparatus. Such a work measurement can only be meaningfully defined as a quantum expectation value and work fluctuations cannot directly be measured, in contrast to the classical case. The work along a classical microstate trajectory can be determined in a single run. The trajectory itself does not need to be known for this purpose; its existence is sufficient. Quantum trajectories do not exist unless they are objectified by a measurement. It is shown how measurements on the environment of the system can provide information about the trajectories. A conditioning of the measured work on these trajectories then allows for the determination of work fluctuations in the quantum system. For these fluctuations an inequality is conjectured whose limit is given by the classical Jarzynski equation. Numerical results support the conjecture. A proof is still missing. By means of the presented framework, the free energy difference of a quantum system can, in principle, be determined without knowledge of the underlying Hamiltonian. However, as is shown, this requires an optimization over several external parameters, since the inequality in general provides only an upper bound. Thus, the operationality of the model enforces a quantum disadvantage. The methods presented in this thesis can be applied to various scenarios in quantum thermodynamics. Especially the framework for work measurements on an external apparatus offers an alternative to common approaches when the system under investigation and especially its Hamiltonian is not known in advance. The focus on operationality will help to better understand to what extend the work quantities defined and measured in quantum thermodynamic systems differ from the classical concept of work.

Page generated in 0.0991 seconds