Spelling suggestions: "subject:"kuantum optics."" "subject:"auantum optics.""
301 |
Single photon generation and manipulation with semiconductor quantum dot devices / Génération et manipulation de photons uniques avec boîtes quantiques semi-conductricesDe Santis, Lorenzo 07 March 2018 (has links)
Les phénomènes quantiques les plus fondamentaux comme la cohérence quantique et l’intrication sont aujourd'hui explorés pour réaliser de nouvelles technologies. C'est le domaine des technologies quantiques, qui promettent de révolutionner le calcul, la communication et la métrologie. En encodant l'information dans les systèmes quantiques, il serait possible de résoudre des problèmes inaccessibles aux ordinateurs classiques, de garantir une sécurité absolue dans les communications et de développer des capteurs dépassant les limites classiques de précision. Les photons uniques, en tant que vecteurs d'information quantique, ont acquis un rôle central dans ce domaine, car ils peuvent être manipulés facilement et être utilisés pour mettre en œuvre de nombreux protocoles quantiques. Pour cela, il est essentiel de développer des interfaces très efficaces entre les photons et les systèmes quantiques matériels, tels les atomes uniques, une fonctionnalité fondamentale à la fois pour la génération et la manipulation des photons. La réalisation de tels systèmes dans l'état solide permettrait de fabriquer des dispositifs quantiques intégrés et à large échelle. Dans ce travail de thèse, nous étudions l'interface lumière-matière réalisée par une boîte quantique unique, utilisée comme un atome artificiel, couplée de façon déterministe à une cavité de type micropilier. Un tel dispositif s'avère être un émetteur et un récepteur efficace de photons uniques, et il est utilisé ici pour implémenter des fonctionnalités quantiques de base. Tout d'abord, sous une excitation optique résonante, nous montrons comment nos composants sont des sources très brillantes de photons uniques. L’accélération de l'émission spontanée de la boîte quantique dans la cavité et le contrôle électrique de la structure permettent de générer des photons très indiscernables avec une très haute brillance. Cette nouvelle génération de sources de photons uniques peut être utilisée pour générer des états de photons intriqués en chemin appelés états NOON. Ces états intriqués sont des ressources importantes pour la détection de phase optique, mais leur caractérisation optique a été peu étudiée jusqu’à présent. Nous présentons une nouvelle méthode de tomographie pour caractériser les états de NOON encodés en chemin et implémentons expérimentalement cette méthode dans le cas de deux photons. Enfin, nous étudions le comportement de nos composants comme filtres non-linéaires de lumière. L'interface optimale entre la lumière et la boîte quantique permet l'observation d'une réponse optique non-linéaire au niveau d'un seul photon incident. Cet effet est utilisé pour démontrer le filtrage des états Fock à un seul photon à partir d’impulsions classiques incidentes. Ceci ouvre la voie à la réalisation efficace d’interactions effectives entre deux photons dans un système à l’état solide, une étape fondamentale pour surmonter les limitations dues au fonctionnement probabilistes des portes optiques linéaires. / Quantum phenomena can nowadays be engineered to realize fundamentally new applications. This is the field of quantum technology, which holds the promise of revolutionizing computation, communication and metrology. By encoding the information in quantum mechanical systems, it appears to be possible to solve classically intractable problems, achieve absolute security in distant communications and beat the classical limits for precision measurements. Single photons as quantum information carriers play a central role in this field, as they can be easily manipulated and can be used to implement many quantum protocols. A key aspect is the interfacing between photons and matter quantum systems, a fundamental operation both for the generation and the readout of the photons. This has been driving a lot of research toward the realization of efficient atom-cavity systems, which allows the deterministic and reversible transfer of the information between the flying photons and the optical transition of a stationary atom. The realization of such systems in the solid-state gives the possibility of fabricating integrated and scalable quantum devices. With this objective, in this thesis work, we study the light-matter interface provided by a single semiconductor quantum dot, acting as an artificial atom, deterministically coupled to a micropillar cavity. Such a device is shown to be an efficient emitter and receiver of single photons, and is used to implement basic quantum functionalities.First, under resonant optical excitation, the device is shown to act as a very bright source of single photons. The strong acceleration of the spontaneous emission in the cavity and the electrical control of the structure, allow generating highly indistinguishable photons with a record brightness. This new generation of single photon sources can be used to generate path entangled NOON states. Such entangled states are important resources for sensing application, but their full characterizatiob has been scarcely studied. We propose here a novel tomography method to fully characterize path entangled N00N state and experimentally demonstrate the method to derive the density matrix of a two-photon path entangled state. Finally, we study the effect of the quantum dot-cavity device as a non-linear filter. The optimal light matter interface achieved here leads to the observation of an optical nonlinear response at the level of a single incident photon. This effect is used to demonstrate the filtering of single photon Fock state from classical incident light pulses. This opens the way towards the realization of efficient photon-photon effective interactions in the solid state, a fundamental step to overcome the limitations arising from the probabilistic operations of linear optical gates that are currently employed in quantum computation and communication.
|
302 |
Cavity-enhanced Photon-Photon Interactions With Bright Quantum Dot Sources / Interactions entre photons émis par des sources brillantes à base de boîtes quantiques en cavitéGiesz, Valérian 14 December 2015 (has links)
Dans le domaine de l’information quantique, les photons apparaissent comme de parfaits bits quantiques (qubits) pour le transport de l’information d’un point à un autre. Ce besoin de photons uniques sur demande, où un et un seul photon est émis avec une bonne fiabilité, conduit à une recherche considérable dans le développement de sources de photons efficace. Un paramètre clé est la brillance, défini comme la probabilité qu’un photon émis par l’émetteur soit collecté. Pour certaines applications, il est également important que tous les photons émis soient tous identiques. On dit alors qu’ils sont indiscernables, dans ce cas les photons peuvent interagir et interférer entre eux. Pour obtenir la source idéale de photons uniques et indiscernables avec une brillance égale à un, de nombreuses pistes sont explorées avec différents émetteurs tels que des défauts dans le diamant, des ions ou des atomes piégés, des molécules uniques ou des boîtes quantiques semiconductrices.En couplant une boîte quantique avec une cavité optique, l’émission spontanée est de la boîte quantique est modifiée pour obtenir des sources brillantes de photons uniques. Une technique innovante développée dans l’équipe du Pr. Pascale Senellart au Laboratoire de Photonique et Nanostructures (LPN) du CNRS permet de fabriquer des sources brillantes de manière reproductible avec une excellente fiabilité.Ce travail explore les performances de boîtes quantiques uniques couplées dans des micropiliers. Diverses techniques sont utilisées pour augmenter la pureté des photons uniques et leur indiscernabilité tout en maintenant une brillance élevée. Dans un premier temps, une structure de cavité adiabatique a été utilisée pour obtenir une plus grande accélération de l’émission spontanée des BQs par effet Purcell. Ces sources ont utilisées pour réaliser un réseau où les photons émis par différentes sources interfèrent. Ensuite, une technique pour appliquer une tension électrique sur les micropilliers a été développée. Grâce à cette technique et à une excitation optique résonante, des photons parfaitement indiscernables sont collectés avec une très bonne brillance.Les résultats présentés ouvrent de nombreuses perspectives pour diverses applications telles que la fabrication d’un réseau quantique, pour la cryptographie quantique, pour la métrologie ou pour la microscopie. / In the pursuit of developing a quantum information network, photons appear to be the most convenient carriers to interconnect distant ports. The need to get on-demand single photons that is one and only one photon, with a high reliability, is the main driving force for the development of bright solid-state sources. One important parameter is the brightness defined as the probability that one collected pulse contains a single photon. For some applications like quantum information processing or long distance quantum communications, the emitted single photons must be also indistinguishable, so that can make use of their quantum interference to implement effective photon-photon interactions. To reach the ideal source of single and indistinguishable photons, different systems are explored : defects in diamond (NV centers), trapped atoms or ions, single molecules or semiconductor quantum dots.By coupling a semiconductor quantum dot to an optical cavity, the spontaneous emission of the emitter can be modified to obtain bright single-photon sources. An innovative technique was developed by Pr. Pascale Senellart and her team at the Laboratory of Photonics and Nanostructures (LPN) from CNRS that allows making such sources in a very reproducible way.This work explores the performance of single quantum dot coupled to micropillars. Various techniques are used in order to increase the single photon purity and indistinguishability while keeping a high source brightness. First, the cavity was modified using an adiabatic architecture such that a strong acceleration of the spontaneous emission was implemented. Then, a technique to apply an electric bias on the micropillars has been developed. The combination of the electric bias with a resonant optical excitation of the quantum dot allows to generation purely indistinguishable photons with a high brightness.The results developed in this thesis open a vast field of novel applications in quantum technologies, from quantum cryptography, metrology to quantum imaging.
|
303 |
Vers les technologies quantiques basées sur l’intrication photonique / Towards quantum applications based on photonic entanglementVergyris, Panagiotis 28 November 2017 (has links)
Le but de cette thèse est de développer des sources d’intrication photonique en vue d'applications en sciences information quantique. Dans ce contexte, nous présentons une source très performante et entièrement guidée permettant, au moyen d'une boucle de Sagnac, la génération d'états hyper-intriqués en polarisation et en énergie-temps. La configuration guidée rend le dispositif versatile, efficace et compatible avec une large bande spectrale, répondant ainsi au besoin des systèmes et réseaux de communication fibrés. À cette fin, nous avons distribué simultanément dans différents canaux télécoms des paires de photons hyper-intriqués au moyen de multiplexeurs en longueur d'onde à 5 canaux (DWDM), augmentant de fait le débit. La qualité de l'intrication est validée par la violation d'une inégalité de Bell étendue à un espace de Hilbert à 16 dimensions. Afin de pouvoir interfacer des photons aux longueurs d'ondes des télécommunications avec les bandes d'absorption des mémoires quantiques situées dans le visible, nous avons également développé une interface cohérente en longueur d'ondes. Un nouveau dispositif de métrologie quantique permettant la mesure avec une précision inégalée des effets de la dispersion chromatique dans les fibres optiques standards est également proposé. Notre approche "quantique" améliore la précision par un facteur 2.6 par rapport aux méthodes de mesures conventionnelles. Dans ce même contexte, nous avons aussi implémenté un nouveau protocole de métrologie de la phase de deux photons en ne détectant uniquement qu'un seul photon. Cette réalisation ouvre la voie à des applications potentielles simples s'appuyant sur peu de ressources au niveau de la détection. Finalement, dans la perspective de la miniaturisation de dispositifs quantiques, nous avons démontré un générateur d'intrication annoncée intégré sur puce qui trouve des applications en calcul et métrologie quantique. / The aim of this thesis was to develop photonic entanglement sources and study their implementation in the general field of quantum information technologies. To this end, a novel fully wave-guided, high performance photonic entanglement source is presented, able to generate hyper-entangled states in the observables of polarization and energy-time by means of a nonlinear Sagnac loop. The waveguide-based design makes it flexible, reliable, and adaptable to a wide spectral range, paving the way towards compact photonic entanglement generators, compatible with fiber-based communication systems and networks. This has been underlined by generating and distributing hyperentanglement in 5x2 dense wavelength division multiplexed channel telecom pairs, simultaneously, towards higher bit rates. The quality of the generated entanglement has been qualified by violating the Bell inequalities in a 16-dimension Hilbert space. Moreover, to adapt the wavelength of the entangled telecom photon pairs to the absorption wavelength of current quantum memory systems, a coherent wavelength converter is demonstrated. Furthermore, within the framework of quantum metrology, a new concept for a high-precision chromatic dispersion (CD) measurement in standard single mode fibers is introduced and demonstrated. In this demonstration, due to conceptual advantages enabled by quantum optics, an unprecedented 2.6 times higher accuracy on CD measurements is shown, compared to state-of-the-art techniques. In the same context, a new protocol for measuring two-photon phase shifts is performed using single photon detection only, promising scalable and potential real device applications with limited resources and simplified detection schemes. Finally, any potential application of quantum optics will be realized using small-scale devices. In this framework, an integrated on-chip heralded path entanglement generator is demonstrated, and shown to be adaptable to logic gate operations.
|
304 |
Extrinsic Quantum Centers in Silicon for Nanophotonics and Quantum ApplicationsHerzig, Tobias 21 June 2022 (has links)
Quantenzentren in Kristallgittern spielen als sogenannte Festkörper-Qubits eine entscheidende Rolle für die Entwicklung der zweiten Quantenrevolution. Das G-Zentrum in Silizium kann hierfür einen wesentlichen Beitrag leisten, da es sich CMOS-kompatibel und damit skalierbar herstellen lässt, es eine scharfe Nullphononenlinie im Bereich der optischen Telekommunikation besitzt und ODMR-aktiv ist. Dies macht es zu einem geeigneten Kandidaten für die Entwicklung photonischer Mikrochips, auf denen Quantentechnologien und Lichtwellenleitung durch eine Spin-Photon-Schnittstelle miteinander verknüpft werden, um somit alle Kriterien zum Aufbau eines Quantennetzwerkes zu erfüllen. In der vorliegenden Arbeit werden G-Zentren durch niederenergetische und räumlich-selektive Ionen-Implantation hergestellt und mittels Photolumineszenz-Spektroskopie und Magnetresonanzmessungen auf ihre optischen und quantenphysikalischen Eigenschaften untersucht. Anhand umfangreicher temperaturabhängiger Ensemble-Messungen in reinem Silizium werden offene Fragen zum Sättigungsverhalten, der Rekombinationsdynamik und der Verschiebung bzw. Verbreiterung der Nullphononenlinie geklärt und die ersten Zerfallszeit-Messungen des angeregten Zustandes des Defektes vorgestellt. Durch die Verwendung von SOI-Proben in Kombination mit niederenergetischer Ionen-Implantation wird weiterhin die erste, jemals in Silizium isolierte Einzelphotonenquelle hergestellt und durch zahlreiche Polarisations- und Korrelationsmessungen als solche identifiziert. Durch die Einzelphotonenmessung erfolgt zusätzlich eine erste Abschätzung der Quanteneffizienz der G-Zentren und die Messung der Lebensdauer des isolierten angeregten Zustandes. Um den Quantenzustand der G-Zentren mittels Mikrowellenfeld manipulieren und sowohl optische als auch elektronisch auslesen zu können, wird ein experimenteller Aufbau beschrieben, mit dem die magnetische Resonanz der G-Zentren in einer SOI-Probe temperaturabhängig bis in den kryogenen Bereich detektiert werden kann. Nach den ersten manuellen Testmessungen wird der Versuchsaufbau durch neue Steuergeräte und eine Automatisierung weiter optimiert, um damit umfangreiche Messungen bei T = 40K und Raumtemperatur durchzuführen. Dabei wird eine mikrowellenabhängige Manipulation der Photolumineszenz der G-Zentren beobachtet, welche mit dem detektierten Photostrom korreliert ist. Die Manipulation der Photolumineszenz wird hauptsächlich auf eine Veränderung der Ladungsträgerdichte aufgrund anderer spinabhängiger Rekombinationszentren zurückgeführt, welche sich an den Grenzflächen des SOI-Schichtstapels bilden. Ideen, um den Einfluss der G-Zentren durch Unterdrückung der anderen Rekombinationszentren zu erhöhen, werden diskutiert.:Bibliografische Beschreibung
Referat
Abstract
Zusammenfassung der Dissertation
Contents
List of Figures
List of Tables
Abbreviations
1 Introduction and motivation
1.1 Demand for silicon photonics and quantum technologies
1.2 Description and aim of the project
1.3 Outline
2 Solid-state and optical properties of silicon
2.1 Crystal properties
2.1.1 Structure
2.1.2 Lattice vibrations
2.1.3 Debye-Waller factor
2.1.4 Energy bands
2.2 Defects and doping in silicon
2.2.1 Intrinsic and extrinsic point defects
2.2.2 Line, area and volume defects
2.2.3 Doping
2.3 Luminescence from silicon
2.3.1 Optical properties of bulk silicon
2.3.2 Non-linear effects in silicon
2.3.3 Dislocation loops
2.3.4 Quantum confinement effects
2.3.5 Rare-Earth (Erbium) doping
2.3.6 Light emitting defects in silicon
2.4 G centers in silicon
2.4.1 Structural properties and creation of G centers
2.4.2 Optical properties and applications of G centers
3 Solid-state quantum technologies
3.1 Ion implantation for defect engineering
3.1.1 High-energy accelerator “Lipsion”
3.1.2 100 kV Microbeam
3.2 Quantum optics
3.2.1 Properties of single photons
3.2.2 Photoluminescence and single-photon measurements
3.2.3 Applications of single-photon sources - quantum key distribution
3.3 Quantum computing
3.3.1 Basic principle
3.3.2 Photonic qubits
3.3.3 Solid-state qubits
4 Optical properties of an ensemble of G centers in silicon
4.1 Experiment description and basic properties
4.1.1 Sample fabrication
4.1.2 Optical spectroscopy
4.1.3 PL response of different defect densities
4.1.4 Photoluminescence excitation measurement
4.1.5 Saturation behavior
4.2 Temperature-dependent photoluminescence spectroscopy
4.2.1 Thermal redshift
4.2.2 ZPL broadening
4.2.3 Temperature-dependent PL intensity
4.2.4 Temperature-dependent lifetime and decay rate
4.3 Recombination dynamics
4.3.1 Spectrally selective recombination dynamics
4.3.2 Lifetime and defect density
4.3.3 Phonon-assisted recombination model
5 G centers as single-photon sources in silicon
5.1 Experimental description
5.1.1 Sample fabrication
5.1.2 Optical spectroscopy
5.2 Evidence of a single-photon source
5.2.1 Autocorrelation study
5.2.2 Photodynamics
5.2.3 PL polarization
5.3 Properties of single photons from G centers
5.3.1 ZPL shift
5.3.2 Saturation and stability
5.3.3 Lifetime of an isolated G center
5.3.4 Estimation of the quantum efficiency
6 Optical and photoelectric readout of G centers in silicon
6.1 Setup
6.1.1 Sample preparation
6.1.2 Circuit board and cryostat
6.1.3 Measuring and control devices
6.1.4 PL spectroscopy
6.2 Manual ODMR and PDMR at cryogenic temperature
6.3 Automated PDMR measurements
6.3.1 Spectrum analysis
6.3.2 Etiology
6.3.3 Voltage dependence
6.3.4 Temperature dependence
6.3.5 Laser dependence
6.3.6 Magnetic field dependence
6.4 Automated PDMR and ODMR at cryogenic temperature
6.5 Discussion
6.5.1 Microwave dielectric heating in silicon
6.5.2 Spin-dependent recombination centers in Si and Si/SiO2 interfaces
6.6 Conclusion
7 Summary and outlook
Bibliography
Danksagung
Wissenschaftlicher Werdegang
Selbstständigkeitserklärung
Erklärung für die Bibliothek / Quantum centers in crystal lattices can form so-called solid-state qubits that play a crucial role for the progress of the second quantum revolution. The G center in silicon can make a significant contribution to this, since it can be fabricated in a CMOS compatible and thus scalable way, it has a sharp zero-phonon line in the optical telecommunication range, and it is ODMR active. This makes it a suitable candidate for the development of photonic microchips, where quantum technologies and optical waveguides are linked by a spin-photon interface, thus fulfilling all the criteria to build a quantum network. In the present work, G centers are fabricated by low-energy and spatially-selective ion implantation and their optical and quantum physical properties are investigated by photoluminescence spectroscopy and magnetic resonance measurements. Using extensive temperature-dependent ensemble measurements in pure silicon, open questions on saturation behavior, recombination dynamics, and zero-phonon line shift as well as broadening are clarified, and the first decay time measurements of the excited state of this defect are presented. By using SOI samples in combination with low-energy ion implantation, the first single-photon source ever isolated in silicon is further fabricated and identified as such by extensive polarization and correlation measurements. The single-photon measurement additionally provides a first estimation of the quantum efficiency of the G centers and the measurement of the lifetime of the isolated excited state. In order to manipulate the quantum state of the G centers by means of a microwave field and to enable an optical as well as an electronical readout, an experimental setup is designed and assembled that allows the temperature-dependent detection of magnetic resonances of G centers in a SOI sample down to the cryogenic range. After the first manual test measurements, the experimental setup is further optimized by new control devices and process automation to allow extensive measurements at T = 40K and room temperature. A microwave-dependent manipulation of the photoluminescence of the G centers is observed, which is correlated with the detected photocurrent. The manipulation of the photoluminescence is mainly attributed to a change in the charge carrier density due to other spin-dependent recombination centers that form at the interfaces of the SOI layer stack. Ideas to increase the influence of the G centers by suppressing the other recombination centers are discussed.:Bibliografische Beschreibung
Referat
Abstract
Zusammenfassung der Dissertation
Contents
List of Figures
List of Tables
Abbreviations
1 Introduction and motivation
1.1 Demand for silicon photonics and quantum technologies
1.2 Description and aim of the project
1.3 Outline
2 Solid-state and optical properties of silicon
2.1 Crystal properties
2.1.1 Structure
2.1.2 Lattice vibrations
2.1.3 Debye-Waller factor
2.1.4 Energy bands
2.2 Defects and doping in silicon
2.2.1 Intrinsic and extrinsic point defects
2.2.2 Line, area and volume defects
2.2.3 Doping
2.3 Luminescence from silicon
2.3.1 Optical properties of bulk silicon
2.3.2 Non-linear effects in silicon
2.3.3 Dislocation loops
2.3.4 Quantum confinement effects
2.3.5 Rare-Earth (Erbium) doping
2.3.6 Light emitting defects in silicon
2.4 G centers in silicon
2.4.1 Structural properties and creation of G centers
2.4.2 Optical properties and applications of G centers
3 Solid-state quantum technologies
3.1 Ion implantation for defect engineering
3.1.1 High-energy accelerator “Lipsion”
3.1.2 100 kV Microbeam
3.2 Quantum optics
3.2.1 Properties of single photons
3.2.2 Photoluminescence and single-photon measurements
3.2.3 Applications of single-photon sources - quantum key distribution
3.3 Quantum computing
3.3.1 Basic principle
3.3.2 Photonic qubits
3.3.3 Solid-state qubits
4 Optical properties of an ensemble of G centers in silicon
4.1 Experiment description and basic properties
4.1.1 Sample fabrication
4.1.2 Optical spectroscopy
4.1.3 PL response of different defect densities
4.1.4 Photoluminescence excitation measurement
4.1.5 Saturation behavior
4.2 Temperature-dependent photoluminescence spectroscopy
4.2.1 Thermal redshift
4.2.2 ZPL broadening
4.2.3 Temperature-dependent PL intensity
4.2.4 Temperature-dependent lifetime and decay rate
4.3 Recombination dynamics
4.3.1 Spectrally selective recombination dynamics
4.3.2 Lifetime and defect density
4.3.3 Phonon-assisted recombination model
5 G centers as single-photon sources in silicon
5.1 Experimental description
5.1.1 Sample fabrication
5.1.2 Optical spectroscopy
5.2 Evidence of a single-photon source
5.2.1 Autocorrelation study
5.2.2 Photodynamics
5.2.3 PL polarization
5.3 Properties of single photons from G centers
5.3.1 ZPL shift
5.3.2 Saturation and stability
5.3.3 Lifetime of an isolated G center
5.3.4 Estimation of the quantum efficiency
6 Optical and photoelectric readout of G centers in silicon
6.1 Setup
6.1.1 Sample preparation
6.1.2 Circuit board and cryostat
6.1.3 Measuring and control devices
6.1.4 PL spectroscopy
6.2 Manual ODMR and PDMR at cryogenic temperature
6.3 Automated PDMR measurements
6.3.1 Spectrum analysis
6.3.2 Etiology
6.3.3 Voltage dependence
6.3.4 Temperature dependence
6.3.5 Laser dependence
6.3.6 Magnetic field dependence
6.4 Automated PDMR and ODMR at cryogenic temperature
6.5 Discussion
6.5.1 Microwave dielectric heating in silicon
6.5.2 Spin-dependent recombination centers in Si and Si/SiO2 interfaces
6.6 Conclusion
7 Summary and outlook
Bibliography
Danksagung
Wissenschaftlicher Werdegang
Selbstständigkeitserklärung
Erklärung für die Bibliothek
|
305 |
Theoretical determination of optical properties for sapphire doped with titanium from its microscopy and analysis of its capabilities for laser without population inversion / Détermination théorique des propriétés optiques du saphir dopé au titane à partir de sa microscopie et analyse de ses capacités de laser sans inversion de populationDa silva, Antonio 10 November 2017 (has links)
Cet exposé est scindé en deux grandes parties. Dans la première, nous estimons des constantes photo-physiques du saphir dopé au titane à partir d'un modèle analytique simple exploitant une théorie de Huang-Rhys pour la détermination du profil spectral des bandes simples et une hypothèse réaliste de superposition de ces dernières. Nous déterminons une formule pour l'indice de réfraction total du Ti:saphir en fonction de la concentration de dopant. Dans une seconde partie, nous évaluons, selon la vérification d'un concept, la capacité de laser sana inversion de populations pour un cristal dopé possédant une basse symétrie. Nous appuyons notre démonstration en établissant une condition de seuil généralisée d'effet laser. Ce concept pourrait être une rupture technologique dans le domaine des grands cristaux dopés et n'a pas encore été investigué par la communauté. / This presentation is split into two main parts. In the first, we estimate photo-physical constants of titanium doped sapphire from a simple analytical model using a Huang-Rhys theory for the determination of the spectral profile of simple bands and from a realistic hypothesis of superposition of the latter. We define a formula for the total refractive index of Ti:sapphire as a function of dopant concentration. In a second part, we evaluate, according to the verification of a concept, the laser capability without population inversion for a doped crystal with low symmetry. We support our demonstration by establishing a generalized laser threshold condition. This concept would be a technological breakthrough in the field of large doped crystals and has not yet been investigated by the community.
|
306 |
Photoemission by Large Electron Wave Packets Emitted Out the Side of a Relativistic Laser FocusCunningham, Eric Flint 08 July 2011 (has links) (PDF)
There are at least two common models for calculating the photoemission of accelerated electrons. The 'extended-charge-distribution' method uses the quantum probability current (multiplied by the electron charge) as a source current for Maxwell's equations. The 'point-like-emitter' method treats the electron like a point particle instead of like a diffuse body of charge. Our goal is to differentiate between these two viewpoints empirically. To do this, we consider a large electron wave packet in a high-intensity laser field, in which case the two viewpoints predict measurable photoemission rates that differ by orders of magnitude. Under the treatment of the 'extended-charge-distribution' model, the strength of the radiated field is significantly limited by interferences between different portions of the oscillating charge density. Alternatively, no suppression of photoemission occurs under the 'point-like-emitter' model because the electron is depicted as having no spatial extent. We designed an experiment to characterize the photoemission rates of electrons accelerated in a relativistic laser focus. Free electron wave packets are produced through ionization by an intense laser pulse at the center of a large vacuum chamber. These quantum wave packets can become comparable in size to the laser wavelength through natural spreading and interactions with the sharp ponderomotive gradients of the laser focus. Electron radiation emitted out the side of the focus is collected by one-to-one imaging into a 105-micron gold-jacketed fiber, which carries the light to a single photon detector located outside the chamber. The electron radiation is red-shifted due to mild relativistic acceleration, and we use this signature to spectrally filter the outgoing light to discriminate against background. In addition, the temporal resolution of the electronics allows distinction between light that travels directly from the focus into the collection system and laser light that may scatter from the chamber wall.
|
307 |
Suppression of Collective Quantum Jumps of Rydberg Atoms due to Collective Spontaneous Emission from Atoms in Free SpaceLees, Eitan Jacob 05 August 2015 (has links)
No description available.
|
308 |
Optical pumping of multiple atoms in the single photon subspace of two-mode cavity QEDYip, Ka Wa 05 August 2015 (has links)
No description available.
|
309 |
A Preliminary Study of Pump/Probe Angular Dependence of Zeeman Electromagnetically Induced TransparencyJackson, Richard Aram, Jr. 12 August 2015 (has links)
No description available.
|
310 |
CHARACTERIZATION OF OPTICAL LATTICES USING PUMP-PROBESPECTROSCOPY AND FLUORESCENCE IMAGINGClements, Ethan Robert 10 August 2016 (has links)
No description available.
|
Page generated in 0.0585 seconds