• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 31
  • 28
  • 27
  • 24
  • 17
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 345
  • 345
  • 68
  • 62
  • 37
  • 34
  • 31
  • 31
  • 26
  • 26
  • 26
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Environmental coupling in a quantum dot as a resource for quantum optics and spin control

Hansom, Jack January 2015 (has links)
A single spin confined to a semiconductor quantum dot is a system of significant interest for quantum information science, as a potential optically-addressable qubit. In many respects, a quantum dot behaves like a single atom with high quality single photon emission. By controlling the light-matter coupling in such a system, it is possible to generate highly non-classical states of light and coherently control a single spin confined to the quantum dot. A departure from the ideal atomic picture appears once we consider the mesoscopic environment with which the quantum dot interacts. Charge fluctuations in the surroundings of the quantum dot affect the photon emission frequency leading to inhomogeneous broadening. Further broadening of the emission is caused by coupling to phonon modes of the host semiconductor material. Finally, coupling between the spin of a confined electron and a large bath of nuclear spins residing in the quantum dot leads to fast dephasing of the electron spin. All of these effects are typically considered detrimental to the potential use of quantum dots for quantum technologies. In this thesis, we develop the environmental coupling of a negatively charged quantum dot as a resource for quantum optics and spin control. First, the phonon-assisted fluorescence is shown to be a useful independent channel for feedback stabilisation of the quantum dot emission frequency, without requiring a measurement of the indistinguishable zero-phonon line. With stabilisation, the corresponding frequency broadening is drastically improved, and the sub-Hz frequency fluctuations are no longer resolved. Next, we show low-power resonance fluorescence emission spectra of the negatively charged trion transition. In the low power regime of resonance fluorescence, the excited state is not populated and most of the emission is coherent. In addition to elastic Rayleigh scattering, we observe coherent Raman sidebands, linked to an effective magnetic field created by the hyperfine interaction, the Overhauser field. This fluctuating effective field lifts the electron spin degeneracy in the absence of a magnetic field, and dictates the optical selection rules of the trion system. These spectra therefore allow for a measurement of the time-averaged distributions of in-plane and out-of-plane Overhauser field components. In the final part of the thesis, we use this hyperfine-generated ? -scheme to optically create electron spin superpositions through two-colour excitation and coherent population trapping. We then show that rapid shifts in the relative phase of the lasers lead to initialisation of the electron spin into a rotated dark state.
102

Study of Optical Properties of Semiconductor Quantum Dot Based Hybrid Nano Assemblies

Mullapudi, Praveena January 2016 (has links) (PDF)
Over the last few decades, a vast research is going on, to study the optical properties of the nano particles i.e., metal and semiconductors thoroughly. Till date most of the optical studies are based on single particle measurement of a quantum dot (QD) or a chromophore under the influence of an external plasmonic field stimulus. In this the-sis, we tried to address the energy transfer at non local level on a layer of compact, monolayer QD assemblies over micro meter range. The energy transfer occurs in the presence of external field of metal particles or nanorods leads to the enhancement or quenching the emission from a layer of QDs. Chapter 1 is introduction to the basic theoretical aspects of excitons in semiconductor (QDs) and its optical properties under strong confinement regime. The discussion is followed with the optical properties of gold nanoparticles and rods, describing size and shape dependent variation of absorption properties, based on Mie and Mie-Gans theory. Theoretical background of collective effects in QD assemblies based on exciton-plasmonic interactions at single particle level as well as polarization based plasmo-nenhanced fluorescence has been subjected. Experimental techniques are explained in chapter 2 which contains the details of the synthesis of polymer capped nanoparticles with the respective characterization. A discussion on the synthesis methods for cadmium selenide QDs, gold nano particles and the rods with different polymer cap-ping legends and the related capping exchange methods. The thin film preparation of QD monolayers as well as hybrid nano assemblies using several techniques, i.e., Langmuir-Blodgett (LB), dip coat methods are provided. Further the details of surface morphology of the prepared thin films has been studied by different microscopic techniques i.e., atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The details of the PL emission measurements of these hybrid arrays using confocal, Raman and polarization based near field scanning optical microscope (NSOM) modes followed with the life time measurements. In third chapter, the substantial strong coupling and collective emission regime is engineered in the QD monolayer films embedded with tiny gold nano particles keeping the QD density same. Tuning the photoluminescence (PL) of semiconducting QD assemblies using small Au NPs in different ratio, different packing density and extent of spectral overlap between QD photoluminescence and the metal nanoparticle absorbance has been discussed. We provided possible experimental and theoretical evidence for the plasmon-mediated emergence of collective emission and enhanced quantum efficiency in these QD films with the consolidation of multiple emitters and multiple NPs. The quantum efficiency of these hybrid assemblies is further explored with different material as well as the size effect of metal nano particles. Chapter 4 comprises the experiment results of the self-assembled compact and partially aligned gold nano rod (GNR) arrays on QD monolayer films. We experimentally demonstrated the quantum efficiency of these QD hybrid assemblies is gaining max-imum when the longitudinal surface plasmon resonance (LSPR) absorption maxima of GNR arrays is resonant with the QD monolayer PL maxima and is always non-existent for the off resonant case. Further, we reported the variability in the size and morphology of these GNR domains leads to the maximum achieved enhancement as well as anisotropy value in comparison with isolated rods and the explored conditions to further enhance the efficiency in these QD hybrid assemblies.
103

Probing Surface Chemistry at the Nanoscale Level

René-Boisneuf, Laetitia January 2011 (has links)
Studies various nanostructured materials have gained considerable interest within the past several decades. This novel class of materials has opened up a new realm of possibilities, both for the fundamental comprehension of matter, but also for innovative applications. The size-dependent effect observed for these systems often lies in their interaction with the surrounding environment and understanding such interactions is the pivotal point for the investigations undertaken in this thesis. Three families of nanoparticles are analyzed: semiconductor quantum dots, metallic silver nanoparticles and rare-earth oxide nanomaterials. The radical scavenging ability of cerium oxide nanoparticles (CeO2) is quite controversial since they have been labeled as both oxidizing and antioxidant species for biological systems. Here, both aqueous and organic stabilized nanoparticles are examined in straightforward systems containing only one reactive oxygen species to ensure a controlled release. The apparent absence of their direct radical scavenging ability is demonstrated despite the ease at which CeO2 nanoparticles generate stable surface Ce3+ clusters, which is used to explain the redox activity of these nanomaterials. On the contrary, CeO2 nanoparticles are shown to have an indirect scavenging effect in Fenton reactions by annihilating the reactivity of Fe2+ salts. Cadmium selenide quantum dots (CdSe QD) constitute another highly appealing family of nanocolloids in part due to their tunable, size-dependent luminescence across the visible spectrum. The effect of elemental sulfur treatment is investigated to overcome one of the main drawbacks of CdSe QD: low fluorescence quantum yield. Herein, we report a constant and reproducible quantum yield of 15%. The effect of sulfur surface treatment is also assessed following the growth of a silica shell, as well as the response towards a solution quencher (4-amino-TEMPO). The sulfur treated QD is also tested for interaction with pyronin Y, a xanthene dye that offers potential energy and electron transfer applications with the QD. Interaction with the dye molecule is compared to results obtained with untreated quantum dots, as well as CdSe/ZnS core shell examples. In another chapter of this thesis, the catalytic potential of silver nanoparticles is addressed for the grafting of polyhydrosiloxane polymer chains with various alkoxy groups. A simple one-pot synthesis is presented with silver salts and the polymer. the latter serves as a mild reducing agent and a stabilizing ligand, once silver nanoparticles are formed in-situ. We evaluate the conversion of silane into silyl ethers groups with the addition of several alcohols, whether primary, secondary or tertiary, and report the yields of grafting under the mildest conditions: room temperature, under air and atmospheric pressure.
104

Electrostatic Control of Single InAs Quantum Dots Using InP Nanotemplates

Cheriton, Ross January 2012 (has links)
This thesis focuses on pioneering a scalable route to fabricate quantum information devices based upon single InAs/InP quantum dots emitting in the telecommunications wavelength band around 1550 nm. Using metallic gates in combination with nanotemplate, site-selective epitaxy techniques, arrays of single quantum dots are produced and electrostatically tuned with a high degree of control over the electrical and optical properties of each individual quantum dot. Using metallic gates to apply local electric fields, the number of electrons within each quantum dot can be tuned and the nature of the optical recombination process controlled. Four electrostatic gates mounted along the sides of a square-based, pyramidal nanotemplate in combination with a flat metallic gate on the back of the InP substrate allow the application of electric fields in any direction across a single quantum dot. Using lateral fields provided by the metallic gates on the sidewalls of the pyramid and a vertical electric field able to control the charge state of the quantum dot, the exchange splitting of the exciton, trion and biexciton are measured as a function of gate voltage. A quadrupole electric field configuration is predicted to symmetrize the product of electron and hole wavefunctions within the dot, producing two degenerate exciton states from the two possible optical decay pathways of the biexciton. Building upon these capabilities, the anisotropic exchange splitting between the exciton states within the biexciton cascade is shown to be reversibly tuned through zero for the first time. We show direct control over the electron and hole wavefunction symmetry, thus enabling the entanglement of emitted photon pairs in asymmetric quantum dots. Optical spectroscopy of single InAs/InP quantum dots atop pyramidal nanotemplates in magnetic fields up to 28T is used to examine the dispersion of the s, p and d shell states. The g-factor and diamagnetic shift of the exciton and charged exciton states from over thirty single quantum dots are calculated from the spectra. The g-factor shows a generally linear dependence on dot emission energy, in agreement with previous work on this subject. A positive linear correlation between diamagnetic coefficient and g-factor is observed.
105

Electron-Electron Interactions in Optical Properties of Graphene Quantum Dots

Ozfidan, Asli Isil January 2015 (has links)
In this thesis, I present a theory of electron-electron interactions in optical properties of graphene and transition metal dichalcogenides (TMDCs), two dimensional nanostructures with a hexagonal lattice. We start our discussion with electron-electron interactions in artificial rings for which the strength of interactions can be varied and exact results can be obtained. The artificial rings are described by the extended Hubbard model and solved using an exact diagonalization method in real and Fourier space of configurations. Exact and analytical results for charged rings are obtained in the limit of very strong interactions. For the quadruple quantum dot ring and the artificial benzene ring, we find that chirality leads to the appearance of a topological phase and an effective gauge field that determines the ground state character with varied interaction strength. For the charged artificial benzene ring, our numerical results show a transition from a degenerate to a non-degenerate ground state with increasing strength of Coulomb interactions. We show that the artificial gauge and the transition in the ground state can be detected as changes in the optical absorption spectrum. In the second part of the thesis, the electronic and optical properties of colloidal graphene quantum dots (CGQD) consisting of many benzene rings are determined. The CGQDs are described by the combination of tight binding, mean field Hartree Fock (HF) and Configuration Interaction methods. The single particle properties are described through the tight binding method based on the pz carbon orbitals. Screened Coulomb interactions between electrons, including direct, exchange, and scattering matrix elements, are calculated using Slater pz orbitals. HF ground states corresponding to semiconductor, Mott-insulator, and spin-polarized phases are obtained as a function of the strength of the screened interaction versus the tunnelling matrix element. The many-body ground and excited states in the semiconducting phase are constructed as a linear combination of a finite number of electron-hole pair excitations from the HF ground state (GS). The Hamiltonian is constructed in the subspace of multi-pair HF excitations to obtain the low energy, many body states by exact diagonalization using the Lanczos method. The degeneracy of the valence- and conduction-band edges of 3-fold rotationally symmetric CGQDs is shown to lead to a characteristic exciton and bi-exciton spectrum. The low-energy exciton spectrum is predicted to consist of two bright-singlet exciton states corresponding to two circular polarizations of light and a lower-energy band of dark singlets and dark triplets. The robustness of the bright degenerate singlet pair against correlations in the many-body state is demonstrated as well as the breaking of the degeneracy by the lowering of symmetry of the CGQD. Band edge biexciton energies and binding energies are predicted, and two degenerate exciton (X) states and a corresponding biexciton (XX) state are identified for the generation of an XX-X cascade. The Auger coupling of XX and excited X states is determined and our theoretical results are compared with experimental absorption and non-linear transient absorption spectra. In the third and final part of the thesis, we replace the two non-equivalent carbon atoms of the graphene hexagonal lattice with a heavy transition-metal atom M, (e.g. Mo or W) and a dimer X2 (e.g. S). The bandstructure of a monolayer MX2 is calculated using density functional theory (DFT). It is shown that a direct gap opens up at all K points of the Brillouin zone and strong spin orbit coupling leads to spin splitting of the valence and conduction bands and emergence of valley dependent optical selection rules. Finally, the magnetoluminescence experiments on a monolayer WS2 emitting circularly polarized light upon its excitation by unpolarized light are described. The emission of polarized light in zero magnetic field is explained by the possibility of formation of a valley polarized 2D electron gas in unintentionally doped WS2.
106

Exploration of the Use of the Kinetic Monte Carlo Method in Simulation of Quantum Dot Growth

Ramsey, James J. 25 April 2011 (has links)
No description available.
107

Development and Characterization of Phospholipid Encapsulated Quantum Dot Constructs for Biologic Applications

Sparks, Laura C 01 June 2012 (has links) (PDF)
DEVELOPMENT AND CHARACTERIZATION OF PHOSPHOLIPID ENCAPSULATED QUANTUM DOT CONSTRUCTS FOR BIOLOGIC APPLICATIONS The American Cancer Society predicts that 577,190 cancer-related deaths and 1,638,910 newly diagnosed cases of cancer will occur in 2012. As these statistics show, cancer is a prevalent and devastating health issue; determined by the Mayo Clinic to be the second leading cause of death in the United States. Skin cancer is the most common form of cancer in the United States. In 2012 more than 68,000 Americans will be diagnosed with melanoma, 48,000 will be diagnosed with an early form of the disease that has not yet reached the lower levels of the epidermis, and more than 2 million people will be treated for basal cell or squamous cell skin cancer. Early and accurate detection is the most reliable way to ensure a positive outcome and the ultimate survival of the patient. As the most aggressive form of skin cancer, survival of melanoma is especially connected to early detection. Current methods for the initial detection of potential cancerous masses and lesions rely on visual examination, palpitation, and biopsy. Accurate determination of the presence of cancerous cells in a biopsy is especially difficult at the early stages when only a small percentage of cells in the biopsied mass show the morphological traits associated with being cancerous. This circumstance often results in a false negative (FN), delaying the necessary treatment until the cancer has reached a more developed stage. Developing more accurate methods for the detection of cancerous cells within a biopsy would aid in alleviating this problem. An improvement to the conventional method of visually examining biopsied tissues for the presence of cells with abnormal morphologies can be offered by utilizing the model of functionalized quantum dot (QD) constructs. Quantum dots are nano-particles composed of semi-conducting materials that fluoresce at discrete wavelengths when irradiated by a high energy UV source. QD constructs are cadmium-selenium/zinc-sulfide (CdSe/ZnS) quantum dots encapsulated within a bovine derived milk phospholipid micelle. QD constructs provide a potential mechanism for the identification of cancerous cells within a biopsy. Appreciating the scope of the clinical problem and understanding the potential of QDs, the objective of this thesis is to develop a primary model for the solubilization, encapsulation, and primary phospholipid functionalization of two distinct sizes of CdSe/ZnS QDs. The first stage of this thesis optimized the currently utilized protocol for synthesizing cadmium-selenium (CdSe) quantum dots to develop a set of parameters for consistently producing white fluorescing CdSe cores (WFCs) and CdSe/ZnS QDs of 505nm and 555nm (+/- 10nm). The application of synthesis times, temperatures, and quenching methods were employed to achieve this. The second stage developed a phospholipid encapsulation method for the initial functionalization and suspension of the hydrophobic QDs in aqueous media via encapsulation within phospholipid micelles. The final stage of this thesis focused on the successful introduction of the QD constructs into keratinocyte cells. Calcein and Ethidium homodimer-1 stains were applied to determine cell viability, Histochoice was applied as a fixative, and Hoechst staining was employed for cell nuclei identification. Analysis using confocal microscopy suggests successful attachment of QD constructs, in 0.1% w/v keratinocyte media, to the exterior of keratinocyte cell membranes with a 30% average cell survival rate at 24 hours after sample introduction. Future research investigating the interaction of QD constructs with biologic mediums of greater physiological complexity, as well as application of a secondary functionalization, are the next steps on the path toward achieving a viable mechanism for targeting and identifying cancerous cells within a biopsy.
108

Atom Probe Tomography for Modelling Eigenstates in a Quantum Dot Ensemble

Natale, Christopher January 2023 (has links)
Epitaxially grown quantum dots (QDs) make up a significant portion of nanoscale semiconductor research, yet precise solutions for their eigenstates in complex geometries are often unknown. Eigenstates are extremely relevant as they impact the emission wavelength, performance, and stability of many optoelectronic devices. In this thesis, atomic force microscopy, transmission electron microscopy, and atom probe tomography (APT) are used to assess and compare QD size and core concentration. APT by means of isosurface reconstruction provides the most accurate ensemble averaged quantum dot size and core concentration. High-angle annular dark-field imaging quantifies core concentration very well, but fails in comparison to precisely quantify QD size. Ensemble averaging is discarded in favour of using the raw APT data to devise a model that can solve the Schrödinger equation in 3-dimensional space and can be expanded upon to include non-trivial quantum dot geometries of any kind. The electron and hole eigenstates for an entire quantum dot ensemble are solved using this model. Hybridized eigenstates between neighbouring quantum dots are realized and found to experience both bonding and anti-bonding of the charge carriers. The existence of a degenerate state is also discovered. The simulated eigenenergies are compared to the photoluminescence emission spectrum and found to accurately represent the exciton recombination energy. This makes it possible to obtain very realistic 3-D eigenstate representations for a variety of complex structures. The modelling technique outlined in this thesis is not constrained to just QDs, but can also be applied to an array of many other nanoscale structures. / Thesis / Master of Applied Science (MASc)
109

Polarized resonance synchronous spectroscopy for characterization of materials’ optical properties

Xu, Xiu Zhu 01 May 2020 (has links)
Optical spectroscopy is an essential tool for characterization of materials’ optical properties. Quantitatively understanding material absorption, scattering and emission properties is challenging with existing spectrometric and fluorometric techniques. The direct Polarized Resonance Synchronous Spectroscopy (PRS2) is a breakthrough to the existing spectroscopic techniques for differentiation and quantification of material absorption, scattering and emission properties including their light depolarizations and optical cross-sections. However, there are some limitations and unchecked assumptions in the direct PRS2 technique that need to be addressed during my PhD study. We first examined the effect of light scattering and absorption on their innerilter-effect (IFE) and validated that sample UV-vis extinction can be approximated as absorption extinction for IFE correction in the PRS2 data processing due to the high sensitivity of PRS2 to light scattering. In the case where such approximation may produce large error, iteration PRS2 can be included to decompose the UV-vis extinction into absorption and scattering components. Compared to the direct PRS2 that must rely on several assumptions, the recent developed Bandwidth Varied PRS2 (BVPRS2) and Polarized Anti-Stokes’, On-resonance, Stokes’-shifted (PAOS) spectroscopic techniques are self-contained methods universally amenable to all kinds of fluorescent materials. BVPRS2 or PAOS is necessary for fluorescent materials that possess non-zero scattering depolarization and wavelength dependent fluorescence depolarization. Furthermore, BVPRS2 and PAOS prove that not only off-resonance fluorescence also contributes to the fluorescence signal detected in PRS2 measurement. BVPRS2 offers indirect observation that fluorescence intensity increases quadratically, while scattering signal increases linearly as wavelength bandwidth expands. More importantly, PAOS allows direct visualization of the contribution from anti-Stokes’-shifted fluorescence, ORF and Stokes’-shifted fluorescence in the detected signals, revealing the origins of the off-resonance contribution. Finally, it is illustrated that different PRS2 methods should be applied to different types of optical materials to ensure accuracy and efficiency. Direct PRS2 was readily used to study gold nanoparticles, which are light absorbers and scatterers. In contrast, PAOS-assisted PRS2 was performed on fluorescent quantum dots, which are simultaneously light absorbers, scatterers and emitters. The presented PRS2 methodology and the new insights acquired from the materials investigated should be of great significance to material design and characterization.
110

Innovative Scintillating Optical Fibers For Detecting/Monitoring Gamma Radiation

Jayaprakash, Ashwini 09 December 2006 (has links)
A scintillating optical fiber sensor of this work consists of a scintillating optical fiber, connected to a photomultiplier tube (PMT) via a conventional silica optical fiber. When a gamma ray impinges on the scintillating optical fiber, photons are generated inside the fiber. The photons are trapped inside the fiber and guided through the PMT. The PMT output signal is acquired by a computer. Two types of scintillating optical fibers sensors were developed for gamma ray detection. The first one is a silica optical fiber doped with an inorganic scintillating agent. The second one is a liquid core waveguide optical fiber filled with a solution of a nanostructured core shell CdSe/ZnS quantum dot. Test results indicate that the scintillating optical fibers developed in this work are sensitive for detecting gamma radiation. These scintillating fibers offer more flexibility for applications in nuclear energy industry as well as in nuclear medical research.

Page generated in 0.0486 seconds