• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting the Response of Aluminum Casting Alloys to Heat Treatment

Wu, Chang Kai 15 April 2012 (has links)
The objective of this research was to develop and verify a mathematical model and the necessary material database that allow predicting the physical and material property changes that occur in aluminum casting alloys in response to precipitation-hardening heat treatment. The model accounts for all three steps of the typical precipitation hardening heat treatment; i.e., the solutionizing, quenching, and aging steps; and it allows predicting the local hardness and tensile strength, and the local residual stresses, distortion and dimensional changes that develop in the cast component during each step of the heat treatment process. The model uses commercially available finite element software and an extensive database that was developed specifically for the aluminum alloy under consideration - namely A356.2 casting alloy. The database includes the mechanical, physical, and thermal properties of the alloy all as functions of temperature. The model predictions were compared to measurements made on commercial cast components that were heat treated according to standard heat treatment protocols and the model predictions were found to be in good agreement with the measurements.
2

Residual Stress Reduction During Quenching of Wrought 7075 Aluminum Alloy

Mitchell, Ian D 12 May 2004 (has links)
The finite difference method was used to calculate the variable heat transfer coefficient required to maximize mechanical properties of heat treated wrought 7075 aluminum alloy without causing residual stress. Quench simulation enabled determination of maximum surface heat flux bordering on inducing plastic flow in the work piece. Quench Factor Analysis was used to correlate cylinder diameter to yield strength in the T73 condition. It was found that the maximum bar diameter capable of being quenched without residual stress while meeting military mechanical design minimums is 2". It was also found that the cooling rate must increase exponentially and that the maximum cooling rate needed to achieve minimum mechanical properties is well within the capability of metals heat treatment industry.
3

Quench Probe and Quench Factor Analysis of Aluminum Alloys in Distilled Water

Fontecchio, Marco 29 April 2002 (has links)
A 6061 aluminum probe was quenched with the CHTE probe-quenching system in distilled water while varying bath temperature and the level of agitation. Time vs. temperature data was collected during the quench by use of an ungrounded K-type thermocouple embedded inside the probe. Cooling rates and heat transfer coefficients, h, were calculated and Quench Factor Analysis (QFA) was also performed to quantitatively classify the quench severity. The data showed an increase in both maximum cooling rate and heat transfer coefficient and a decrease in the Quench Factor, Q, as bath temperature decreased and agitation level increased. Maximum heat transfer coefficient values ranged from 1000 W/m2K to 3900 W/m2K while maximum cooling rates of 50¡ÃƒÂ£C/s to 190¡ÃƒÂ£C/s were achieved. In addition, it was found that at higher levels of agitation, there was also an increase in the variation (i.e. standard deviation) of the cooling rate and therefore h and Q.
4

A Methodology to Predict the Effects of Quench Rates on Mechanical Properties of Cast Aluminum Alloys

Ma, Shuhui 01 May 2006 (has links)
The physical properties of polymer quench bath directly affect the cooling rate of a quenched part. These properties include the type of quenchant, its temperature, concentration, and agitation level. These parameters must be controlled to optimize the quenching process in terms of alloy microstructure, properties and performance. Statistically designed experiments have been performed to investigate the effects of the process parameters (i.e. polymer concentration and agitation) on the heat transfer behavior of cast aluminum alloy A356 in aqueous solution of Aqua-Quench 260 using the CHTE quenching-agitation system. The experiments were designed using Taguchi technique and the experimental results were analyzed with Analysis of Variance (ANOVA) based on the average cooling rate. It is found that average cooling rate dramatically decreases with the increase in polymer concentration. Agitation only enhances the average cooling rate at low and medium concentration levels. From ANOVA analysis, the process parameter that affects the variation of average cooling rate most is the polymer concentration, its percentage contribution is 97%. The effects from agitation and the interaction between polymer concentration and tank agitation are insignificant. The mechanical properties of age-hardenable Al-Si-Mg alloys depend on the rate at which the alloy is cooled after the solutionizing heat treatment. A model based on the transformation kinetics is needed for the design engineer to quantify the effects of quenching rates on the as-aged properties. Quench Factor analysis was developed by Staley to describe the relationship between the cooling rate and the mechanical properties of an age-hardenable alloy. This method has been previously used to successfully predict yield strength, hardness of wrought aluminum alloys. However, the Quench Factor data for aluminum castings are still rare in the literature. In this study, the Jominy End Quench method was used to experimentally collect the time-temperature and hardness data as the inputs for Quench Factor modeling. Multiple linear regression analysis was performed on the experimental data to estimate the kinetic parameters during quenching. Time-Temperature-Property curves of cast aluminum alloy A356 were generated using the estimated kinetic parameters. Experimental verification was performed on a L5 lost foam cast engine head. The predicted hardness agreed well with that experimentally measured.

Page generated in 0.0677 seconds