Spelling suggestions: "subject:"réduction géométriques"" "subject:"déduction géométriques""
1 |
Approche hamiltonienne à ports pour la modélisation, la réduction et la commande des dynamiques des plasmas dans les tokamaks / Port-Hamiltonian approach for modelling, reduction and control of plasma dynamics in tokamaksVu, Ngoc Minh Trang 12 November 2014 (has links)
L'objectif principal de la thèse est d'établir un modèle sous forme hamiltonienne à ports pour la dynamique du plasma dans les réacteurs de fusion de type tokamak, puis de démontrer le potentiel de cette approche pour aborder les problèmes d'intégration numérique et de commande non linéaire. Les bilans thermo-magnéto-hydrodynamiques, écrits sous forme hamiltonienne à ports à l'aide de structures Stokes-Dirac, conduisent à un modèle 3D “ multi-physique ” du plasma. Ensuite, un modèle 1D équivalent au modèle de diffusion résistive est obtenu en supposant les mêmes hypothèses d'équilibre quasi-statique et de symétries. Un schéma symplectique de réduction spatiale de ce modèle 1D qui préserve la structure du modèle et ses invariants est établi. Il ouvre la voie à des travaux ultérieurs de commande non linéaire fondés sur la structure géométrique d'interconnexion et les bilans du modèle. La commande IDA-PBC (Interconnection and Damping Assignment - Passivity Based Control) basée sur la passivité du modèle est d'abord synthétisée pour ce système en dimension finie. Finalement, une commande IDA-PBC associée avec la commande à la frontière est proposée pour le système en dimension infinie. Les controlleurs sont testés et validés avec les simulateurs des tokamak (METIS pour le Tore Supra de CEA/ Cadarache, et RAPTOR pour le TCV de l'EPFL Lausanne, Suisse). / The modelling and analysis of the plasma dynamics in tokamaks using the port-Hamiltonian approach is the main project purpose. Thermo-mMagnetohydrodynamics balances have been written in port-Hamiltonian form using Stokes-Dirac interconnection structures and 3D differential forms. A simplified 1D model for control has been derived using quasi-static and symmetry assumptions. It has been proved to be equivalent to a classical 1D control model: the resistive diffusion model for the poloidal magnetic flux. Then a geometric spatial integration scheme has been developped. It preserves both the symplecticity of the Dirac interconnection structure and physically conserved extensive quantities. This will allow coming works on energy-based approaches for the non linear control of the plasma dynamics.An Interconnection and Damping Assignment - Passivity Based Control (IDA-PBC) , the most general Port-Hamiltonian control, is chosen first to deal with the studied Tokamak system. It is based on a model made of the two coupled PDEs of resistive diffusion for the magnetic poloidal flux and of radial thermal diffusion. The used TMHD couplings are the Lorentz forces (with non-uniform resistivity) and the bootstrap current. The loop voltage at the plasma boundary, the total external current and the plasma heating power are considered as controller outputs. Due to the actuator constraints which imply to have a physically feasible current profile deposits, a feedforward control is used to ensure the compatibility with the actuator physical capability. Then, the IDA-PBC controllers, both finite-dimensional and infinite-dimensional, are designed to improve the system stabilization and convergence speed. The proposed works are validated against the simulation data obtained from the Tore-Supra WEST (CEA/Cadarache, France) test case and from RAPTOR code for the TCV real-time control system (CRPP/ EPFL, Lausanne, Switzerland).
|
Page generated in 0.0805 seconds