Spelling suggestions: "subject:"région d'intérêt"" "subject:"légion d'intérêt""
1 |
Représentation et compression à haut niveau sémantique d’images 3D / Representation and compression at high semantic level of 3D imagesSamrouth, Khouloud 19 December 2014 (has links)
La diffusion de données multimédia, et particulièrement les images, continuent à croitre de manière très significative. La recherche de schémas de codage efficaces des images reste donc un domaine de recherche très dynamique. Aujourd'hui, une des technologies innovantes les plus marquantes dans ce secteur est sans doute le passage à un affichage 3D. La technologie 3D est largement utilisée dans les domaines de divertissement, d'imagerie médicale, de l'éducation et même plus récemment dans les enquêtes criminelles. Il existe différentes manières de représenter l'information 3D. L'une des plus répandues consiste à associer à une image classique dite de texture, une image de profondeur de champs. Cette représentation conjointe permet ainsi une bonne reconstruction 3D dès lors que les deux images sont bien corrélées, et plus particulièrement sur les zones de contours de l'image de profondeur. En comparaison avec des images 2D classiques, la connaissance de la profondeur de champs pour les images 3D apporte donc une information sémantique importante quant à la composition de la scène. Dans cette thèse, nous proposons un schéma de codage scalable d'images 3D de type 2D + profondeur avec des fonctionnalités avancées, qui préserve toute la sémantique présente dans les images, tout en garantissant une efficacité de codage significative. La notion de préservation de la sémantique peut être traduite en termes de fonctionnalités telles que l'extraction automatique de zones d'intérêt, la capacité de coder plus finement des zones d'intérêt par rapport au fond, la recomposition de la scène et l'indexation. Ainsi, dans un premier temps, nous introduisons un schéma de codage scalable et joint texture/profondeur. La texture est codée conjointement avec la profondeur à basse résolution, et une méthode de compression de la profondeur adaptée aux caractéristiques des cartes de profondeur est proposée. Ensuite, nous présentons un schéma global de représentation fine et de codage basé contenu. Nous proposons ainsi schéma global de représentation et de codage de "Profondeur d'Intérêt", appelé "Autofocus 3D". Il consiste à extraire finement des objets en respectant les contours dans la carte de profondeur, et de se focaliser automatiquement sur une zone de profondeur pour une meilleure qualité de synthèse. Enfin, nous proposons un algorithme de segmentation en régions d'images 3D, fournissant une forte consistance entre la couleur, la profondeur et les régions de la scène. Basé sur une exploitation conjointe de l'information couleurs, et celle de profondeur, cet algorithme permet la segmentation de la scène avec un degré de granularité fonction de l'application visée. Basé sur cette représentation en régions, il est possible d'appliquer simplement le même principe d'Autofocus 3D précédent, pour une extraction et un codage de la profondeur d'Intérêt (DoI). L'élément le plus remarquable de ces deux approches est d'assurer une pleine cohérence spatiale entre texture, profondeur, et régions, se traduisant par une minimisation des problèmes de distorsions au niveau des contours et ainsi par une meilleure qualité dans les vues synthétisées. / Dissemination of multimedia data, in particular the images, continues to grow very significantly. Therefore, developing effective image coding schemes remains a very active research area. Today, one of the most innovative technologies in this area is the 3D technology. This 3D technology is widely used in many domains such as entertainment, medical imaging, education and very recently in criminal investigations. There are different ways of representing 3D information. One of the most common representations, is to associate a depth image to a classic colour image called texture. This joint representation allows a good 3D reconstruction, as the two images are well correlated, especially along the contours of the depth image. Therefore, in comparison with conventional 2D images, knowledge of the depth of field for 3D images provides an important semantic information about the composition of the scene. In this thesis, we propose a scalable 3D image coding scheme for 2D + depth representation with advanced functionalities, which preserves all the semantics present in the images, while maintaining a significant coding efficiency. The concept of preserving the semantics can be translated in terms of features such as an automatic extraction of regions of interest, the ability to encode the regions of interest with higher quality than the background, the post-production of the scene and the indexing. Thus, firstly we introduce a joint and scalable 2D plus depth coding scheme. First, texture is coded jointly with depth at low resolution, and a method of depth data compression well suited to the characteristics of the depth maps is proposed. This method exploits the strong correlation between the depth map and the texture to better encode the depth map. Then, a high resolution coding scheme is proposed in order to refine the texture quality. Next, we present a global fine representation and contentbased coding scheme. Therefore, we propose a representation and coding scheme based on "Depth of Interest", called "3D Autofocus". It consists in a fine extraction of objects, while preserving the contours in the depth map, and it allows to automatically focus on a particular depth zone, for a high rendering quality. Finally, we propose 3D image segmentation, providing a high consistency between colour, depth and regions of the scene. Based on a joint exploitation of the colour and depth information, this algorithm allows the segmentation of the scene with a level of granularity depending on the intended application. Based on such representation of the scene, it is possible to simply apply the same previous 3D Autofocus, for Depth of Interest extraction and coding. It is remarkable that both approaches ensure a high spatial coherence between texture, depth, and regions, allowing to minimize the distortions along object of interest's contours and then a higher quality in the synthesized views.
|
2 |
Hierarchical clustering using equivalence test : application on automatic segmentation of dynamic contrast enhanced image sequence / Clustering hiérarchique en utilisant le test d’équivalent : application à la segmentation automatique des séries dynamiques de perfusionLiu, Fuchen 11 July 2017 (has links)
L'imagerie de perfusion permet un accès non invasif à la micro-vascularisation tissulaire. Elle apparaît comme un outil prometteur pour la construction de biomarqueurs d'imagerie pour le diagnostic, le pronostic ou le suivi de traitement anti-angiogénique du cancer. Cependant, l'analyse quantitative des séries dynamiques de perfusion souffre d'un faible rapport signal sur bruit (SNR). Le SNR peut être amélioré en faisant la moyenne de l'information fonctionnelle dans de grandes régions d'intérêt, qui doivent néanmoins être fonctionnellement homogènes. Pour ce faire, nous proposons une nouvelle méthode pour la segmentation automatique des séries dynamiques de perfusion en régions fonctionnellement homogènes, appelée DCE-HiSET. Au coeur de cette méthode, HiSET (Hierarchical Segmentation using Equivalence Test ou Segmentation hiérarchique par test d'équivalence) propose de segmenter des caractéristiques fonctionnelles ou signaux (indexées par le temps par exemple) observées discrètement et de façon bruité sur un espace métrique fini, considéré comme un paysage, avec un bruit sur les observations indépendant Gaussien de variance connue. HiSET est un algorithme de clustering hiérarchique qui utilise la p-valeur d'un test d'équivalence multiple comme mesure de dissimilarité et se compose de deux étapes. La première exploite la structure de voisinage spatial pour préserver les propriétés locales de l'espace métrique, et la seconde récupère les structures homogènes spatialement déconnectées à une échelle globale plus grande. Etant donné un écart d'homogénéité $\delta$ attendu pour le test d'équivalence multiple, les deux étapes s'arrêtent automatiquement par un contrôle de l'erreur de type I, fournissant un choix adaptatif du nombre de régions. Le paramètre $\delta$ apparaît alors comme paramètre de réglage contrôlant la taille et la complexité de la segmentation. Théoriquement, nous prouvons que, si le paysage est fonctionnellement constant par morceaux avec des caractéristiques fonctionnelles bien séparées entre les morceaux, HiSET est capable de retrouver la partition exacte avec grande probabilité quand le nombre de temps d'observation est assez grand. Pour les séries dynamiques de perfusion, les hypothèses, dont dépend HiSET, sont obtenues à l'aide d'une modélisation des intensités (signaux) et une stabilisation de la variance qui dépend d'un paramètre supplémentaire $a$ et est justifiée a posteriori. Ainsi, DCE-HiSET est la combinaison d'une modélisation adaptée des séries dynamiques de perfusion avec l'algorithme HiSET. A l'aide de séries dynamiques de perfusion synthétiques en deux dimensions, nous avons montré que DCE-HiSET se révèle plus performant que de nombreuses méthodes de pointe de clustering. En terme d'application clinique de DCE-HiSET, nous avons proposé une stratégie pour affiner une région d'intérêt grossièrement délimitée par un clinicien sur une série dynamique de perfusion, afin d'améliorer la précision de la frontière des régions d'intérêt et la robustesse de l'analyse basée sur ces régions tout en diminuant le temps de délimitation. La stratégie de raffinement automatique proposée est basée sur une segmentation par DCE-HiSET suivie d'une série d'opérations de type érosion et dilatation. Sa robustesse et son efficacité sont vérifiées grâce à la comparaison des résultats de classification, réalisée sur la base des séries dynamiques associées, de 99 tumeurs ovariennes et avec les résultats de l'anapathologie sur biopsie utilisés comme référence. Finalement, dans le contexte des séries d'images 3D, nous avons étudié deux stratégies, utilisant des structures de voisinage des coupes transversales différentes, basée sur DCE-HiSET pour obtenir la segmentation de séries dynamiques de perfusion en trois dimensions. (...) / Dynamical contrast enhanced (DCE) imaging allows non invasive access to tissue micro-vascularization. It appears as a promising tool to build imaging biomarker for diagnostic, prognosis or anti-angiogenesis treatment monitoring of cancer. However, quantitative analysis of DCE image sequences suffers from low signal to noise ratio (SNR). SNR may be improved by averaging functional information in large regions of interest, which however need to be functionally homogeneous. To achieve SNR improvement, we propose a novel method for automatic segmentation of DCE image sequence into functionally homogeneous regions, called DCE-HiSET. As the core of the proposed method, HiSET (Hierarchical Segmentation using Equivalence Test) aims to cluster functional (e.g. with respect to time) features or signals discretely observed with noise on a finite metric space considered to be a landscape. HiSET assumes independent Gaussian noise with known constant level on the observations. It uses the p-value of a multiple equivalence test as dissimilarity measure and consists of two steps. The first exploits the spatial neighborhood structure to preserve the local property of the metric space, and the second recovers (spatially) disconnected homogeneous structures at a larger (global) scale. Given an expected homogeneity discrepancy $\delta$ for the multiple equivalence test, both steps stop automatically through a control of the type I error, providing an adaptive choice of the number of clusters. Parameter $\delta$ appears as the tuning parameter controlling the size and the complexity of the segmentation. Assuming that the landscape is functionally piecewise constant with well separated functional features, we prove that HiSET will retrieve the exact partition with high probability when the number of observation times is large enough. In the application for DCE image sequence, the assumption is achieved by the modeling of the observed intensity in the sequence through a proper variance stabilization, which depends only on one additional parameter $a$. Therefore, DCE-HiSET is the combination of this DCE imaging modeling step with our statistical core, HiSET. Through a comparison on synthetic 2D DCE image sequence, DCE-HiSET has been proven to outperform other state-of-the-art clustering-based methods. As a clinical application of DCE-HiSET, we proposed a strategy to refine a roughly manually delineated ROI on DCE image sequence, in order to improve the precision at the border of ROIs and the robustness of DCE analysis based on ROIs, while decreasing the delineation time. The automatic refinement strategy is based on the segmentation through DCE-HiSET and a series of erosion-dilation operations. The robustness and efficiency of the proposed strategy are verified by the comparison of the classification of 99 ovarian tumors based on their associated DCE-MR image sequences with the results of biopsy anapathology used as benchmark. Furthermore, DCE-HiSET is also adapted to the segmentation of 3D DCE image sequence through two different strategies with distinct considerations regarding the neighborhood structure cross slices. This PhD thesis has been supported by contract CIFRE of the ANRT (Association Nationale de la Recherche et de la Technologie) with a french company INTRASENSE, which designs, develops and markets medical imaging visualization and analysis solutions including Myrian®. DCE-HiSET has been integrated into Myrian® and tested to be fully functional.
|
Page generated in 0.0812 seconds