• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structuring of image databases for the suggestion of products for online advertising / Structuration des bases d’images pour la suggestion des produits pour la publicité en ligne

Yang, Lixuan 10 July 2017 (has links)
Le sujet de la thèse est l'extraction et la segmentation des vêtements à partir d'images en utilisant des techniques de la vision par ordinateur, de l'apprentissage par ordinateur et de la description d'image, pour la recommandation de manière non intrusive aux utilisateurs des produits similaires provenant d'une base de données de vente. Nous proposons tout d'abord un extracteur d'objets dédié à la segmentation de la robe en combinant les informations locales avec un apprentissage préalable. Un détecteur de personne localises des sites dans l'image qui est probable de contenir l'objet. Ensuite, un processus d'apprentissage intra-image en deux étapes est est développé pour séparer les pixels de l'objet de fond. L'objet est finalement segmenté en utilisant un algorithme de contour actif qui prend en compte la segmentation précédente et injecte des connaissances spécifiques sur la courbure locale dans la fonction énergie. Nous proposons ensuite un nouveau framework pour l'extraction des vêtements généraux en utilisant une procédure d'ajustement globale et locale à trois étapes. Un ensemble de modèles initialises un processus d'extraction d'objet par un alignement global du modèle, suivi d'une recherche locale en minimisant une mesure de l'inadéquation par rapport aux limites potentielles dans le voisinage. Les résultats fournis par chaque modèle sont agrégés, mesuré par un critère d'ajustement globale, pour choisir la segmentation finale. Dans notre dernier travail, nous étendons la sortie d'un réseau de neurones Fully Convolutional Network pour inférer le contexte à partir d'unités locales (superpixels). Pour ce faire, nous optimisons une fonction énergie, qui combine la structure à grande échelle de l'image avec le local structure superpixels, en recherchant dans l'espace de toutes les possibilité d'étiquetage. De plus, nous introduisons une nouvelle base de données RichPicture, constituée de 1000 images pour l'extraction de vêtements à partir d'images de mode. Les méthodes sont validées sur la base de données publiques et se comparent favorablement aux autres méthodes selon toutes les mesures de performance considérées. / The topic of the thesis is the extraction and segmentation of clothing items from still images using techniques from computer vision, machine learning and image description, in view of suggesting non intrusively to the users similar items from a database of retail products. We firstly propose a dedicated object extractor for dress segmentation by combining local information with a prior learning. A person detector is applied to localize sites in the image that are likely to contain the object. Then, an intra-image two-stage learning process is developed to roughly separate foreground pixels from the background. Finally, the object is finely segmented by employing an active contour algorithm that takes into account the previous segmentation and injects specific knowledge about local curvature in the energy function.We then propose a new framework for extracting general deformable clothing items by using a three stage global-local fitting procedure. A set of template initiates an object extraction process by a global alignment of the model, followed by a local search minimizing a measure of the misfit with respect to the potential boundaries in the neighborhood. The results provided by each template are aggregated, with a global fitting criterion, to obtain the final segmentation.In our latest work, we extend the output of a Fully Convolution Neural Network to infer context from local units(superpixels). To achieve this we optimize an energy function,that combines the large scale structure of the image with the locallow-level visual descriptions of superpixels, over the space of all possiblepixel labellings. In addition, we introduce a novel dataset called RichPicture, consisting of 1000 images for clothing extraction from fashion images.The methods are validated on the public database and compares favorably to the other methods according to all the performance measures considered.
2

Approches intelligentes pour le pilotage adaptatif des systèmes en flux tirés dans le contexte de l'industrie 4.0 / Intelligent approaches for handling adaptive pull control systems in the context of industry 4.0

Azouz, Nesrine 28 June 2019 (has links)
De nos jours, de nombreux systèmes de production sont gérés en flux « tirés » et utilisent des méthodes basées sur des « cartes », comme : Kanban, ConWIP, COBACABANA, etc. Malgré leur simplicité et leur efficacité, ces méthodes ne sont pas adaptées lorsque la production n’est pas stable et que la demande du client varie. Dans de tels cas, les systèmes de production doivent donc adapter la tension de leur flux tout au long du processus de fabrication. Pour ce faire, il faut déterminer comment ajuster dynamiquement le nombre de cartes (ou de ‘e-card’) en fonction du contexte. Malheureusement, ces décisions sont complexes et difficiles à prendre en temps réel. De plus, dans certains cas, changer trop souvent le nombre de cartes kanban peut perturber la production et engendrer un problème de nervosité. Les opportunités offertes par l’industrie 4.0 peuvent être exploitées pour définir des stratégies intelligentes de pilotage de flux permettant d’adapter dynamiquement ce nombre de cartes kanban.Dans cette thèse, nous proposons, dans un premier temps, une approche adaptative basée sur la simulation et l'optimisation multi-objectif, capable de prendre en considération le problème de la nervosité et de décider de manière autonome (ou d'aider les gestionnaires)  quand et où ajouter ou retirer des cartes Kanban. Dans un deuxième temps, nous proposons une nouvelle approche adaptative et intelligente basée sur un réseau de neurones dont l’apprentissage est d’abord réalisé hors ligne à l’aide d’un modèle numérique jumeau (simulation), exploité par une optimisation multi-objectif. Après l’apprentissage, le réseau de neurones permet de décider en temps réel, quand et à quelle étape de fabrication il est pertinent de changer le nombre de cartes kanban. Des comparaisons faites avec les meilleures méthodes publiées dans la littérature montrent de meilleurs résultats avec des changements moins fréquents. / Today, many production systems are managed in "pull" control system and used "card-based" methods such as: Kanban, ConWIP, COBACABANA, etc. Despite their simplicity and efficiency, these methods are not suitable when production is not stable and customer demand varies. In such cases, the production systems must therefore adapt the “tightness” of their production flow throughout the manufacturing process. To do this, we must determine how to dynamically adjust the number of cards (or e-card) depending on the context. Unfortunately, these decisions are complex and difficult to make in real time. In addition, in some cases, changing too often the number of kanban cards can disrupt production and cause a nervousness problem. The opportunities offered by Industry 4.0 can be exploited to define smart flow control strategies to dynamically adapt this number of kanban cards.In this thesis, we propose, firstly, an adaptive approach based on simulation and multi-objective optimization technique, able to take into account the problem of nervousness and to decide autonomously (or to help managers) when and where adding or removing Kanban cards. Then, we propose a new adaptive and intelligent approach based on a neural network whose learning is first realized offline using a twin digital model (simulation) and exploited by a multi-objective optimization method. Then, the neural network could be able to decide in real time, when and at which manufacturing stage it is relevant to change the number of kanban cards. Comparisons made with the best methods published in the literature show better results with less frequent changes.

Page generated in 0.0408 seconds