Spelling suggestions: "subject:"réseau transmettent"" "subject:"réseau transmettre""
1 |
Réseaux transmetteurs reconfigurables pour le dépointage et la formation de faisceau en bande millimétrique / Reconfigurable transmitarrays for beam-steering and beam -forming at millimeter-wavesDiaby, Fatimata 14 December 2018 (has links)
De nos jours, les antennes à réseaux transmetteurs attirent un grand intérêt pour de nombreuses applications civiles et militaires aux bandes de fréquence comprises entre 10 et 110 GHz (réseaux de communication 5G, liens point à point, radars, etc.).Le travail de thèse vise à faire des innovations dans la modélisation et la conception d'antennes à réseaux transmetteurs pour des applications en bande Ka (28-40 GHz). Il porte plus précisément sur le développement d'outils numériques pour l’analyse théorique des réseaux transmetteurs, la conception et la démonstration de plusieurs prototypes avec des fonctionnalités avancées, telles que des réseaux transmetteurs passifs (larges bandes ou à multifaisceaux) et actifs (à reconfiguration électronique).La première partie des travaux consiste en une analyse théorique des réseaux transmetteurs. Dans un premier temps, l’impact de la méthode de compensation de phase sur les performances des réseaux transmetteurs est étudié. La loi de compensation de phase de l’onde quasi-sphérique incidente sur l’ouverture du réseau transmetteur est calculée en utilisant deux méthodes nommées compensation à phase constante et compensation par ligne à retard, et nous montrons que cette dernière permet d’augmenter la bande passante du réseau transmetteur et de corriger les erreurs de dépointage du faisceau. Dans un second temps, le principe de fonctionnement des réseaux transmetteurs facettés est décrit en détail. La simulation numérique du réseau transmetteur à trois facettes est validée au travers de simulations électromagnétiques 3-D. Pour un certain angle d’inclinaison, nous montrons que la bande passante et la capacité de dépointage du réseau transmetteur sont améliorées au détriment du gain.La suite des travaux porte sur la conception et le prototypage de deux réseaux transmetteurs passifs, dont l’un à faisceau collimaté et très large bande et l’autre à quatre faisceaux fixes. Les deux réseaux transmetteurs sont basés sur une cellule élémentaire à 3bits qui assure une double fonction à savoir la compensation de phase et la conversion de la polarisation linéaire en circulaire. Le réseau passif à faisceau collimaté présente un gain mesuré de 33,8 dBi (correspondant à une efficacité d'ouverture de 51,2%) et une bande passante à -3 dB supérieure à 15,9%. La distribution de phase du réseau transmetteur à quatre faisceaux a été optimisée par un algorithme génétique afin d’avoir des faisceaux dépointés à ± 25° dans le plan horizontal et le plan vertical à la fréquence d’optimisation.La dernière partie des travaux vise la conception d’un réseau transmetteur reconfigurable à 27-31 GHz. Dans un premier temps, une cellule élémentaire active à quatre états de phase (2 bits) en polarisation linéaire a été conçue et validée expérimentalement. Elle est composée de six couches métalliques imprimées sur trois substrats. Les éléments rayonnants sont des antennes patch rectangulaires comprenant chacun deux diodes PIN pour contrôler la phase de transmission. Le principe de fonctionnement de la cellule élémentaire a été validé expérimentalement avec des pertes d’insertion minimales de 1.6-2,1 dB et une bande passante en transmission (à 3 dB) de 10-12,1% pour les quatre états de phase 0 °, 90°, 180° et 270°. Cette cellule a ensuite été utilisée pour la conception d’un réseau transmetteur reconfigurable comprenant 14 × 14 cellules unitaires et 784 diodes PIN. Un prototype a été réalisé et caractérisé, il présente un gain maximum mesuré de 19,8 dBi, correspondant à une efficacité d'ouverture de 23,5%, et une bande passante à 3 dB de 4,7 GHz (26,2-30,9 GHz). Malgré quelques éléments défaillants, ce prototype valide le principe de fonctionnement et la faisabilité de réseaux transmetteurs en bande Ka avec une quantification de phase de 2 bits et constitue une des premières réalisations de ce type dans l’état de l’art actuel. / Nowadays, transmitarray antennas are of great interest for many civil and military applications in frequency bands between 10 and 110 GHz (5G mobile networks, point-to-point communication systems, radars, etc.).This thesis aims to make major innovations in modeling and design of transmitarray antennas for Ka-band applications (28-40 GHz). It focuses on the development of numerical tools, and the design and demonstration of several prototypes with advanced functionalities, such as passive (broadband or multibeam) and active (at electronic reconfiguration) transmitarrays.The first part of the work consists of a theoretical analysis of the transmitarray antenna. In a first step, the impact of the phase compensation method on the performance of the transmitarray is studied. The phase compensation law of the quasi-spherical wave incident on the array aperture is calculated using two methods called constant phase compensation and true-time delay (TTD) compensation. The numerical results show that TTD compensation allows an increase of the transmitarrays bandwidth and a reduction of the beam squint as compared to constant phase-shift compensation. In a second step, the operating principle of facetted transmitarrays is described in detail. The numerical simulation of a 3-facet transmitarray is validated through 3-D electromagnetic simulations. For a certain facet angle, the bandwidth and the beam scanning capability of the TA are improved at the expense of the gain.The next step of the work concerns the design and prototyping of two passive transmitarray antennas, one with a collimated and a large bandwidth, and the other with four fixed beams. The two transmitarrays are based on a 3-bit unit-cell providing two functions, namely the phase compensation and the polarization conversion from linear to circular. The passive beam-collimated transmitarray exhibits a measured gain of 33.8 dBi (corresponding to an aperture efficiency of 51.2%) and a 3-dB gain-bandwidth larger than 15.9%. The quad-beam transmitarray phase distribution has been optimized by a genetic algorithm code coupled with an analytical tool. The array is designed to radiate four beams at ±25° in the horizontal and vertical planes at the optimization frequency.The last part of the work aims to the design of a 27-31 GHz reconfigurable transmitarray antenna. Initially, an active unit-cell with four phase states (2 bits) in linear polarization was designed and validated experimentally. It consists of six metal layers printed on three substrates. The radiating elements are rectangular patch antennas, each of them including two PIN diodes to control the transmission phase. The operating principle of the unit-cell has been experimentally validated with a minimum insertion loss of 1.6-2.1 dB and a 3-dB transmission bandwidth of 10-12.1% for the four phase states. 0°, 90°, 180° and 270°.Then, this unit-cell was used for the design of a reconfigurable transmitarray antenna comprising 14 × 14 unit cells and 784 PIN diodes. A prototype was realized and characterized, it presents a measured maximum gain of 19.8 dBi, corresponding to an aperture efficiency of 23.5%, and a 3-dB bandwidth of 4.7 GHz (26.2% at 30.9 GHz). Despite some faulty elements, this prototype validates the operating principle and the feasibility of Ka-band transmitarray antennas with a 2-bit phase quantization. It is one of the first demonstration of such an antenna in the current state of the art.
|
2 |
Intégration d'antennes pour objets communicants aux fréquences millimétriques / Integrated antennas for wireless devices at millimetre-wave frequenciesZevallos Luna, Jose Alberto 13 October 2014 (has links)
Cette thèse porte sur l'étude d'antennes intégrées sur silicium aux fréquences millimétriques, dans le but d'aboutir à des modules d'émission-réception totalement intégrés et reportés par des technologies standards dans un objet communicant. Ce travail comprend deux axes majeurs: Le première axe traite de l'étude, la conception et la réalisation d'antennes intégrées dans un boitier standard QFN couplées à un circuit émetteur-récepteur Ultra Large Bande (ULB) à 60 GHz comprenant des antennes intégrées de type dipôle replié fabriquées en technologie CMOS SOI 65-nm sur silicium haute résistivité. Dans un premier temps, nous avons défini le modèle de simulation à partir duquel nous avons étudié les performances des antennes prenant en compte l'influence de l'environnement (boitier, capot, fil d'interconnexions et technologie de fabrication). Dans un second temps, nous avons réalisé une optimisation des performances en adaptation et en rayonnement en ajoutant au sein du boitier un substrat et des éléments rayonnants couplés aux antennes intégrées sur la puce. Ce dispositif permet de réaliser des communications très haut débit (jusqu'à 2.2 Gbps) avec une très faible consommation d'énergie. Nous montrons qu'il est possible d'atteindre une distance de communication de plusieurs mètres grâce à un réseau transmetteur réalisé en technologie imprimée.Le deuxième axe porte sur la conception et la réalisation d'antennes multifaisceaux en bande V pour applications à long portée; il propose d'associer un réseau transmetteur réalisé sur technologie imprimée à un réseau focal constitué d'un petit nombre d'antennes intégrées sur silicium afin d'obtenir un compromis intéressant entre le niveau de gain, le coût et les capacités de dépointage de faisceau. Plusieurs réseaux sont démontrés avec un faisceau en polarisation circulaire, un gain de 18.6 dBi et une capacité de dépointage de ±24°. / This PhD thesis investigates the integration of antennas on silicon substrates at millimetre-wave frequencies in order to obtain fully-integrated and packaged transceiver modules using standard technologies in wireless devices. This work is organized in two main parts:In the first part, we investigated the design and realization of integrated antennas in a standard QFN package coupled to a 60 GHz Ultra-Wide-Band (UWB) transceiver chip with two integrated folded-dipole antennas implemented in a 65-nm CMOS-SOI technology on high-resistivity silicon. We defined a simulation model from which we studied the performance of integrated antennas, taking into account the influence of the environment (package, lid, wirebonding and manufacturing technology). Then, we optimized the antenna performances in impedance matching and radiation gain using radiating elements printed on a substrate and coupled to the on-chip folded dipoles. This antenna led to the demonstration of high-data rate communications (up to 2.2 Gbps) with a very low power consumption. We showed that the communication distance can be extended up to several meters using a transmit array printed on a low-loss substrate.In the second part, we investigated the design and realization of multibeam antennas in V-band for long-range applications; it is based on a transmit-array realized in standard printed technologies associated with a focal source array, which consists of a small number of integrated antennas on silicon in order to achieve a good compromise between the radiation gain, the cost and the beam steering capabilities. Several arrays were demonstrated with a circularly-polarized beam, a gain of 18.6 dBi et a beam-steering capability of ±24°.
|
3 |
Étude et conception de réseaux transmetteurs reconfigurables en bande Ka / Study and design of reconfigurable transmitarray antennas in Ka-bandPham, Trung-Kien 05 December 2017 (has links)
Dans les systèmes de communication et de détection sans fil, l'antenne est un élément indispensable pour transformer l'énergie électrique en ondes électromagnétiques rayonnée dans l'espace, et vice versa. Les antennes sont utilisées dans de nombreux dispositifs militaires et civils, tels que les radars (SAR, secteur automobile, détection de débris, etc.), les instruments biomédicaux, les systèmes de télécommunication (téléphones mobiles, stations de base) pour les communications point à multi-point ou point à point par exemple. Les antennes jouent aussi un rôle essentiel pour le développement de futurs réseaux connectés reliant plusieurs appareils à des utilisateurs en temps réel, par exemple pour l'Internet des objets (IoT). Les réseaux transmetteurs sont une solution attrayante pour de nombreuses applications telles que les communications par satellite (Satcom) ou les futurs réseaux 5G. L'architecture des antennes à réseau transmetteur les rend extrêmement compétitifs comparés aux réseaux phasés par exemple grâce à leur alimentation par onde d’espace et car ils ne souffrent pas du blocage induit par la source primaire, comme c’est le cas pour les réseaux réflecteurs ou les antennes à réflecteur. Grâce à leur fonctionnement en mode transmission, les réseaux transmetteurs peuvent être également facilement montés sur des plates-formes mobiles.Les applications Satcom en bande Ka constituent le secteur applicatif majeur de cette thèse. Cette bande fournit un débit de données élevé à la fois pour les liaisons descendantes et les liaisons montantes, en remplacement des systèmes actuels en bande Ku. Dans ce contexte, il convient aussi de prêter une attention particulière aux communications avec des plates-formes mobiles, par exemple les trains à grande vitesse, les avions, etc., ce qui nécessite de mettre au point des antennes à balayage de faisceau. De nombreuses propriétés avancées sont exploitées depuis ces dernières années pour accroître les débits et la flexibilité des systèmes de communication sans fil, par exemple la polarisation circulaire, la double polarisation, le fonctionnement multi-fréquence ou large bande, le dépointage électronique de faisceau. Pour réduire les coûts, des preuves de concept de réseaux transmetteurs non diélectriques sont également proposées. Cette thèse s’est déroulée dans le cadre du projet ANR TRANSMIL (Reconfigurable TRANSmitarrays for beam steering and beam forming at MILlimetre wave). Les objectifs de cette thèse sont de proposer de nouvelles architectures de réseaux transmetteurs fonctionnant en bande Ka en liaison descendante (de 17,7 GHz à 21,2 GHz) et en liaison montante (de 27,5 GHz à 31 GHz). Différents prototypes ont été conçus et fabriqués afin de valider les concepts proposés en bande X et en bande Ka. Un bon accord entre les résultats numériques et mesurés a été obtenu systématiquement. En particulier, les réseaux transmetteurs à double polarisation que nous avons conçus en bande X présentent un gain de 25 dBi et une bande passante à 3 dB de 20% à 10 GHz. Ces propriétés sont indépendantes de la polarisation du champ rayonné, ce qui signifie que des faisceaux de polarisation linéaire orthogonale peuvent être rayonnés indépendamment dans des directions différentes. Un réseau transmetteur bi-bande fonctionnant en bande Ka a également été mis au point. Sa bande passante à 3 dB est de 10% autour des fréquences centrales (19,5 GHz et 29 GHz) et son efficacité de rayonnement atteint 60%. D’autres concepts ont également été étudiés (réseaux transmetteurs sans diélectrique, réseau transmetteur reconfigurable). / Transmitarray is an attractive solution for front-end devices in the next generation of communications (5G). The spatial-fed architecture of transmitarray antennas can compete with phase-arrays due to the absence of feeding network and with reflectarrays since they do not suffer from feed blockage. Thanks to their operation in transmission mode, transmitarrays can be easily mounted on platforms for outdoor environment applications. With mature printed-circuit board technology, there are unstoppable experiments in various frequency bands from cm-wave to mm-wave and up to terahertz in upcoming years for potential applications. Many advanced properties are exploited in transmitarrays in recent years to meet high demands of communications facilities, for example, circular-polarization, dual-/multi-polarization or frequencies through many techniques. Some experiments are consid-ered to validate eligibility of this antenna type in commercial services or military missions, namely electronically steering beam, broad bandwidth, etc. In terms of cost reduction and rigidity, non-dielectric prototypes are also proposed. The Ka-band Satcom applications are the main objective of this thesis through trans-mitarray solution. This band provides high data rate for both down-link and up-link in replacement of the current Ku-band systems with miniaturized module in next dec-ades. Hence, it is worth to pay attention to communications for moving platforms, for example, high-speed trains, planes, etc.
|
Page generated in 0.0499 seconds