• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 249
  • 134
  • 32
  • Tagged with
  • 438
  • 438
  • 245
  • 210
  • 178
  • 153
  • 138
  • 108
  • 103
  • 94
  • 86
  • 84
  • 82
  • 79
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Le Calcul du Gradient d'Erreur dans les Réseaux de Neurones : Applications aux Telecom et aux Sciences Environnementales

Aussem, Alexandre 19 December 2002 (has links) (PDF)
Document de 180 pages décrivant en détail les techniques de descente du gradient dans les réseaux de neurones récurrents.
12

Réseaux de neurones pour le traitement automatique du langage: conception et réalisatin de filtres d'informations

Stricker, Mathieu 12 1900 (has links) (PDF)
En raison de l'augmentation constante du volume d'information accessible électroniquement, la conception et la mise en uvre d'outils efficaces, permettant notamment à l'utilisateur de n'avoir accès qu'à l'information qu'il juge pertinente, devient une nécessité absolue. Comme la plupart de ces outils sont destinés à être utilisés dans un cadre professionnel, les exigences de fiabilité et de convivialité sont très importantes; les problèmes à résoudre pour satisfaire ces exigences sont nombreux et difficiles. L'accès à cette information pertinente peut se faire en fournissant à un utilisateur des documents pertinents ou en lui proposant des passages de documents pertinents (ou des réponses à des questions). Le premier cas relève du domaine de la recherche de textes et le second du domaine de l'extraction d'informations. C'est dans le domaine très actif de la recherche de textes que s'est situé notre travail, réalisé dans le cadre d'une collaboration entre Informatique CDC, filiale de la Caisse des Dépôts et Consignations, et le Laboratoire d'Électronique de l'ESPCI. Le but de nos travaux a été de développer un modèle fondé sur l'apprentissage numérique pour la catégorisation de textes ou, plus précisément, pour ce qui correspond à la tâche de routing dans le découpage de la conférence TREC (Text REtrieval Conference). L'approche que nous avons conçue nous a permis d'obtenir un résultat très satisfaisant: nous avons remporté la tâche de "routing" de la compétition TREC 9, devançant notamment Microsoft. Le point essentiel de notre approche est l'utilisation d'un classifieur qui est un réseau de neurones dont l'architecture prend en considération le contexte local des mots. La mise en uvre d'une méthode de sélection des entrées nous a permis de réduire à une vingtaine le nombre de descripteurs de chaque texte; néanmoins, le nombre de paramètres reste élevé eu égard au nombre d'exemples disponibles (notamment lors de la compétition TREC 9). Il a donc été nécessaire de mettre en uvre une méthode de régularisation pour obtenir des résultats significatifs à l'issue des apprentissages. Nos résultats ont été validés d'une part grâce au corpus Reuters-21578 qui est souvent utilisé par la communauté de la catégorisation de textes, et d'autre part, par la participation aux sous-tâches de routing de TREC-8 et TREC-9, qui ont permis d'effectuer des comparaisons chiffrées avec d'autres approches. Nos travaux ont été intégrés dans l'application ExoWeb développée à la Caisse des Dépôts, pour y ajouter des fonctionnalités opérationnelles originales. Cette application offrait, sur l'intranet du groupe, un service de catégorisation de dépêches AFP en temps réel; cette catégorisation s'effectuait grâce à des modèles à bases de règles. La première fonctionnalité nouvelle résultant de nos travaux est un outil qui permet à l'administrateur du système de surveiller automatiquement le vieillissement de filtres construits sur des modèles à base de règles. L'idée de cette application est de fabriquer une "copie" d'un filtre à base de règles avec un filtre utilisant un réseau de neurones. Comme le réseau de neurones produit une probabilité de pertinence et non une réponse binaire, il est possible d'attirer l'attention de l'administrateur sur les documents pour lesquels les filtres et les réseaux de neurones fournissent des réponses divergentes: documents considérés comme pertinents par la méthode à base de règles, mais obtenant une probabilité proche de zéro avec le réseau de neurones, et documents considérés comme non pertinents avec le premier et obtenant une probabilité de pertinence proche de un avec le second. Nous avons également proposé les bases d'une deuxième application, qui permet à un utilisateur de fabriquer lui-même un filtre à sa convenance avec un travail minimum. Pour réaliser cette application, il est nécessaire que l'utilisateur fournisse une base de documents pertinents. Cela peut se faire grâce à l'utilisation d'un moteur de recherche conjointement avec un réseau de neurones ou uniquement grâce au moteur de recherche.
13

Application des réseaux de neurones à l'identification d'un axe de machine-outil

Muxika Olasagasti, Eñaut 22 November 2002 (has links) (PDF)
Les machines-outils ont été l'objet des études au fur et à mesure que les entreprises voulaient augmenter la productivité. De nos jours, les aspects qui sont traités sont les nouveaux matériaux pour la partie mécanique d'une part et l'amélioration du contrôle numérique d'autre part. Cette thèse essaie de répondre à la question sur la viabilité de l'usage des Réseaux de Neurones Artificiels à la compensation des résonances et l'autoréglage. Plus exactement nous avons étudié la modélisation de l'axe, la mécanique aussi comme l'électrique, avec ses imperfections et l'application des réseaux de neurones pour identifier ces phénomènes non linéaires. Nous avons aussi profité pour faire le parallèle avec les méthodes traditionnelles d'identification linéaire.
14

Avancées théoriques sur la représentation et l'optimisation des réseaux de neurones

Le Roux, Nicolas January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
15

Apprentissage incrémental de règles sensorimotrices dans un robot, du babillage moteur à l'utilisation d'outils / Incremental learning of sensorimotor rules in a robot, from motor babbling to tool-use

Braud, Raphaël 23 November 2017 (has links)
Ma thèse porte sur l'intégration développementale de différents systèmes d'apprentissage dans un robot, du babillage moteur à l'émergence de l'utilisation d'outils. L'utilisation d'outils recouvre de nombreuses problématiques, certaines bas niveau (comme l'extension du schéma corporel) et d'autres plus haut niveau (comme la capacité à faire une séquence d'actions).Nous avons pour cela proposé un modèle appelé Dynamic Sensorimotor Model (DSM). DSM apprend des lois sensorimotrices, qui consistent à prédire les variations sensorielles (comme le déplacement d'un objet dans l'espace visuel) en fonction :1) De magnitudes motrices (comme des commandes en vitesse de servomoteurs).2) D'un contexte donné (un vecteur de données sensorielles).Un tel prédicteur peut apprendre et affiner ses lois sensorimotrices dans n'importe quelle situation, que ce soit durant l'exécution d'une tâche ou durant une phase de babillage moteur. L'apprentissage de ces prédictions est donc indépendant de l'exécution de tâches particulières, et pourra être exploité dans de nouveaux contextes, et pour satisfaire de nouvelles tâches.Pour cela, DSM contient un mécanisme de simulation motrice mais aussi un mécanisme de simulation de contextes. Ces simulations portent ainsi sur :1) Les entrées motrices, ce qui permet de déterminer les commandes motrices à effectuer en vue d'une tâche particulière.2) Les entrées sensorielles, ce qui permet de proposer des contextes alternatifs au sein desquels les actions permettant la réalisation d'une tâche pourront être effectuées. Ces contextes alternatifs pourront alors se constituer en sous-buts permettant d'effectuer une séquence d'actions.Grâce à ces simulations, des expériences sur robot réel ont permis de satisfaire une tâche consistant à rejoindre une cible avec l'extrémité du bras, en faisant un détour pour saisir un outil. La saisie a comme propriété d'étendre le schéma corporel (le segment terminal du bras du robot).La capacité à faire des séquences à la volée repose sur les contextes qui auront été appris. Cela met en évidence l'importance d'avoir des contextes ne contenant que les données suffisantes à la prédiction, afin de générer, par le mécanisme de simulation, des sous-buts les plus minimaux possibles pour satisfaire un but donné.Notre modèle catégorise des lois additives afin de ne pas perturber les lois sensorimotrices précédemment apprises et ainsi apprendre des lois de manière incrémentale. Dans DSM, une nouvelle catégorie se caractérise par l'instauration d'une distance entre la configuration sensorielle correspondant au contexte actuel, dans lequel les lois courantes sont en échec, et le dernier contexte dans lequel ces lois s'appliquaient correctement. Cette distance entre contextes est donc multimodale, et indépendante de la topologie propre des senseurs d'entrée. Par contre, étant issue de deux situations à deux moments différents, cette distance dépend de l'exploration sensorimotrice du robot durant cet interval de temps. Pendant cette période, les senseurs qui auront suffisamment changés de valeurs apparaîtront comme discriminant un contexte par rapport à l'autre, bien qu'ils ne soient pas tous pertinents. Ce sera par l'action que les senseurs pertinents seront sélectionnés. / Inspired by concepts found in developmental psychology, my work focuses on robotic learning through motor babbling in order to achieve low-level sensorimotor control and, subsequently, to progress to more high-level behaviours such as the use of tools. Tool-use raises several key issues related to the extension of the body schema and the ability to make sequences of actions. In this presentation I will discuss my research efforts in this area by presenting a model called "Dynamic Sensorimotor Model (DSM)". DSM learns sensorimotor laws by making predictions about sensory input variations, as a result of observing environmental phenomena and interacting with objects in the reaching space.Sensorimotor laws depend on; 1) motor magnitudes (e.g., motor commands in velocity) and 2) a given context (i.e., a sensory input vector). A predictor learns and refines sensorimotor laws either during the execution of a task or during a motor babbling phase. Learning laws is therefore independent of the execution of specific tasks and they can be exploited in both new contexts and/or for new tasks.DSM employs two mechanisms. First, a mechanism for motor simulations that considers the result of simulated motor inputs to determine appropriate motor commands to be performed towards a particular task. Second, a mechanism for context simulations that uses simulated sensory inputs in order to identify contexts that can potentially form sub-goals towards the completion of a task.The performance of the system is evaluated through a series of experiments conducted using both a simulated and a real robotic platform. The results demonstrate the ability of the system to complete reaching tasks and highlight its strength in making use of a nearby tool when the target is not within its reach.The ability to make sequences of actions on the fly is based on the accuracy of the contexts that the system gradually learns. The last part of my work focuses on improving the efficiency of making sequences of actions by offering the ability to categorize contexts based on the variations observed in the sensors with respect to the variation of the sensorimotor laws.
16

Reconnaissance visuelle robuste par réseaux de neurones dans des scénarios d'exploration robotique. Détecte-moi si tu peux ! / Robust visual recognition by neural networks in robotic exploration scenarios. Detect me if you can!

Guerry, Joris 20 November 2017 (has links)
L'objectif principal ce travail de thèse est la reconnaissance visuelle pour un robot mobile dans des conditions difficiles. En particulier nous nous intéressons aux réseaux de neurones qui présentent aujourd'hui les meilleures performances en vision par ordinateur. Nous avons étudié le principe de sélection de méthodes pour la classification d'images 2D en utilisant un réseau de neurones sélecteur pour choisir le meilleur classifieur disponible étant donnée la situation observée. Cette stratégie fonctionne lorsque les données peuvent être facilement partitionnées vis-à-vis des classifieurs disponibles, ce qui est le cas quand des modalités complémentaires sont utilisées. Nous avons donc utilisé des données RGB-D (2.5D) en particulier appliquées à la détection de personnes. Nous proposons une combinaison de réseaux de neurones détecteurs indépendants propres à chaque modalité (couleur & carte de profondeur) basés sur une même architecture (le Faster RCNN). Nous partageons des résultats intermédiaires des détecteurs pour leur permettre de se compléter et d'améliorer la performance globale en situation difficile (perte de luminosité ou bruit d'acquisition de la carte de profondeur). Nous établissons un nouvel état de l'art dans le domaine et proposons un jeu de données plus complexe et plus riche à la communauté (ONERA.ROOM). Enfin, nous avons fait usage de l'information 3D contenue dans les images RGB-D au travers d'une méthode multi-vue. Nous avons défini une stratégie de génération de vues virtuelles 2D cohérentes avec la structure 3D. Pour une tâche de segmentation sémantique, cette approche permet d'augmenter artificiellement les données d'entraînement pour chaque image RGB-D et d'accumuler différentes prédictions lors du test. Nous obtenons de nouveaux résultats de référence sur les jeux de données SUNRGBD et NYUDv2. Ces travaux de thèse nous ont permis d'aborder de façon originale des données robotiques 2D, 2.5D et 3D avec des réseaux de neurones. Que ce soit pour la classification, la détection et la segmentation sémantique, nous avons non seulement validé nos approches sur des jeux de données difficiles, mais également amené l'état de l'art à un nouveau niveau de performance. / The main objective of this thesis is visual recognition for a mobile robot in difficult conditions. We are particularly interested in neural networks which present today the best performances in computer vision. We studied the concept of method selection for the classification of 2D images by using a neural network selector to choose the best available classifier given the observed situation. This strategy works when data can be easily partitioned with respect to available classifiers, which is the case when complementary modalities are used. We have therefore used RGB-D data (2.5D) in particular applied to people detection. We propose a combination of independent neural network detectors specific to each modality (color & depth map) based on the same architecture (Faster RCNN). We share intermediate results of the detectors to allow them to complement and improve overall performance in difficult situations (luminosity loss or acquisition noise of the depth map). We are establishing new state of the art scores in the field and propose a more complex and richer data set to the community (ONERA.ROOM). Finally, we made use of the 3D information contained in the RGB-D images through a multi-view method. We have defined a strategy for generating 2D virtual views that are consistent with the 3D structure. For a semantic segmentation task, this approach artificially increases the training data for each RGB-D image and accumulates different predictions during the test. We obtain new reference results on the SUNRGBD and NYUDv2 datasets. All these works allowed us to handle in an original way 2D, 2.5D and 3D robotic data with neural networks. Whether for classification, detection and semantic segmentation, we not only validated our approaches on difficult data sets, but also brought the state of the art to a new level of performance.
17

Réseaux convolutifs à politiques

Pothier, Dominique 27 January 2024 (has links)
Malgré leurs excellentes performances, les exigences élevées des réseaux de neurones artificiels en terme de volume de données et de puissance de calcul limitent leur adoption dans plusieurs domaines. C'est pourquoi il reste important de développer de nouvelles architectures moins voraces. Ce mémoire cherche à produire une architecture plus flexible et moins vorace en s'appuyant sur la théorie de l'apprentissage par renforcement. En considérant le réseau comme un agent suivant une politique, on réalise que cette politique est beaucoup plus rigide que celle suivie habituellement par les agents d'apprentissage par renforcement. Nous posons l'hypothèse qu'une architecture capable de formuler une politique plus flexible pourrait atteindre des performances similaires tout en limitant son utilisation de ressources. L'architecture que nous proposons s'inspire de la recherche faite en prédiction de paramètres, particulièrement de l'architecture hypernetwork, que nous utilisons comme base de référence. Nos résultats montrent que l'apprentissage d'une politique dynamique aussi performante que les politiques statiques suivies par les réseaux conventionnels n'est pas une tâche triviale. Nos meilleurs résultats indiquent une diminution du nombre de paramètres de 33%, une diminution des calculs de 12% au prix d'une baisse de l'exactitude des prédictions de 2%. Malgré ces résultats, nous croyons que notre architecture est un point de départ pouvant être amélioré de plusieurs manières que nous explorons rapidement en conclusion. / Despite their excellent performances, artificial neural networks high demand of both data and computational power limit their adoption in many domains. Developing less demanding architecture thus remain an important endeavor. This thesis seeks to produce a more flexible and less resource-intensive architecture by using reinforcement learning theory. When considering a network as an agent instead of a function approximator, one realize that the implicit policy followed by popular feed forward networks is extremely simple. We hypothesize that an architecture able to learn a more flexible policy could reach similar performances while reducing its resource footprint. The architecture we propose is inspired by research done in weight prediction, particularly by the hypernetwork architecture, which we use as a baseline model.Our results show that learning a dynamic policy achieving similar results to the static policies of conventional networks is not a trivial task. Our proposed architecture succeeds in limiting its parameter space by 20%, but does so at the cost of a 24% computation increase and loss of5% accuracy. Despite those results, we believe that this architecture provides a baseline that can be improved in multiple ways that we describe in the conclusion.
18

Contribution à la surveillance des systèmes de production à l'aide des réseaux de neurones dynamiques : Application à la e-maintenance

ZEMOURI, RYAD 28 November 2003 (has links) (PDF)
Les méthodes de surveillance industrielle sont divisées en deux catégories : méthodes de surveillance avec modèle formel de l'équipement, et méthodes de surveillance sans modèle de l'équipement. Les modèles mathématiques formels des équipements industriels sont souvent entachés d'incertitudes et surtout difficiles à obtenir. Cette thèse présente l'application des réseaux de neurones artificiels pour la surveillance d'équipements industriels. Nous proposons une architecture de Réseaux à Fonctions de base Radiales qui exploite les propriétés dynamiques des architectures localement récurrentes pour la prise en compte de l'aspect temporel des données d'entrée. En effet, la prise en compte de l'aspect dynamique nécessite des architectures de réseaux de neurones particulières avec des algorithmes d'apprentissage souvent compliqués. Dans cette optique, nous proposons une version améliorée de l'algorithme des k-moyennes qui permet de déterminer aisément les paramètres du réseau de neurones. Des tests de validation montrent qu'à la convergence de l'algorithme d'apprentissage, le réseau de neurones se situe dans la zone appelée « zone de bonne généralisation ». Le réseau de neurones a été ensuite décomposé en fonctions élémentaires facilement interprétables en langage automate. La partie applicative de cette thèse montre qu'un traitement de surveillance en temps réel est possible grâce aux architectures à automates programmables industriels. Le réseau de neurones chargé dans l'automate est entièrement configurable à distance par le protocole de communication TCP/IP. Une connexion Internet permet alors à un expert distant de suivre l'évolution de son équipement et également de valider l'apprentissage du réseau de neurones artificiel.
19

Restauration adaptative des contours par une approche inspirée de la prédiction des performances

Rousseau, Kami January 2008 (has links)
En télédétection, les cartes de contours peuvent servir, entre autres choses, à la restitution géométrique, à la recherche d'éléments linéaires, ainsi qu'à la segmentation. La création de ces cartes est faite relativement tôt dans la chaîne de traitements d'une image. Pour assurer la qualité des opérations subséquentes, il faut veiller à obtenir une carte de contours précise. Notre problématique est de savoir s'il est possible de diminuer la perte de temps liée au choix d'algorithme et de paramètre en corrigeant automatiquement la carte de contours. Nous concentrerons donc nos efforts sur le développement d'une méthode de détection/restauration de contours adaptative. Notre méthode s'inspire d'une technique de prédiction des performances d'algorithmes de bas niveau. Elle consiste à intégrer un traitement par réseau de neurones à une méthode"classique" de détection de contours. Plus précisément, nous proposons de combiner la carte de performances avec la carte de gradient pour permettre des décisions plus exactes. La présente étude a permis de développer un logiciel comprenant un réseau de neurones entraîné pour prédire la présence de contours. Ce réseau de neurones permet d'améliorer les décisions de détecteurs de contours, en réduisant le nombre de pixels de fausses alarmes et de contours manqués. La première étape de ce travail consiste en une méthode d'évaluation de performance pour les cartes de contours. Une fois ce choix effectué, il devient possible de comparer les cartes entre elles. Il est donc plus aisé de déterminer, pour chaque image, la meilleure détection de contours. La revue de la littérature réalisée simultanément a permis de faire un choix d'un groupe d'indicateurs prometteurs pour la restauration de contours. Ces derniers ont servi à la calibration et à l'entrainement d'un réseau de neurones pour modéliser les contours. Par la suite, l'information fournie par ce réseau a été combinée par multiplication arithmétique avec les cartes d'amplitudes de détecteurs"classiques" afin de fournir de nouvelles cartes d'amplitude du gradient. Le seuillage de ces contours donne des cartes de contours"optimisées". Sur les images aéroportées du jeu de données South Florida, la médiane des mesures-F de la pour l'algorithme de Sobel passe de 51,3 % avant la fusion à 56,4 % après. La médiane des mesures-F pour l'algorithme de Kirsch amélioré est de 56,3 % et celle de Frei-Chen amélioré est de 56,3 %. Pour l'algorithme de Sobel avec seuillage adaptatif, la mesure-F médiane est de 52,3 % avant fusion et de 57,2 % après fusion.En guise de comparaison, la mesure-F médiane pour le détecteur de Moon, mathématiquement optimal pour contours de type"rampe", est de 53,3 % et celle de l'algorithme de Canny, est de 61,1 %. L'applicabilité de notre algorithme se limite aux images qui, après filtrage, ont un rapport signal sur bruit supérieur ou égal à 20. Sur les photos au sol du jeu de données de South Florida, les résultats sont comparables à ceux obtenus sur les images aéroportées. Par contre, sur le jeu de données de Berkeley, les résultats n'ont pas été concluants. Sur une imagette IKONOS du campus de l'Université de Sherbrooke, pour l'algorithme de Sobel, la mesure-F est de 45,7 % «0,9 % avant la fusion et de 50,8 % après. Sur une imagette IKONOS de l'Agence Spatiale Canadienne, pour l'algorithme de Sobel avec seuillage adaptatif, la mesure-F est de 35,4 % «0,9 % avant la fusion et de 42,2 % après. Sur cette même image, l'algorithme de Argyle (Canny sans post-traitement) a une mesure-F de 35,1 % «0,9 % avant fusion et de 39,5 % après. Nos travaux ont permis d'améliorer la banque d'indicateurs de Chalmond, rendant possible le prétraitement avant le seuillage de la carte de gradient. À chaque étape, nous proposons un choix de paramètres permettant d'utiliser efficacement la méthode proposée. Les contours corrigés sont plus fins, plus complets et mieux localisés que les contours originaux. Une étude de sensibilité a été effectuée et permet de mieux comprendre la contribution de chaque indicateur. L'efficacité de l'outil développé est comparable à celle d'autres méthodes de détection de contours et en fait un choix intéressant pour la détection de contours. Les différences de qualité observées entre notre méthode et celle de Canny semble être dues à l'utilisation, ou non, de post-traitements. Grâce au logiciel développé, il est possible de réutiliser la méthodologie; cette dernière a permis d'opérationnaliser la méthode proposée. La possibilité de réutiliser le filtre, sans réentrainement est intéressante. La simplicité du paramétrage lors de l'utilisation est aussi un avantage. Ces deux facteurs répondent à un besoin de réduire le temps d'utilisation du logiciel.
20

Modélisation expérimentale par les réseaux de neurones du perçage multi-materiaux

Roudgé, Mathieu 08 February 2011 (has links)
Les nouvelles avancées dans le domaine de la science des matériaux ont engendré l’apparition de nouvelles problématiques notamment concernant leurs perçages. Dans le cas des structures aéronautiques, l’opération de perçage des panneaux multi-matériaux CFRP/aluminium se situe juste avant l’assemblage final. Les pièces percées ont donc une forte valeur ajoutée. L’intérêt de pouvoir prédire le moment où la qualité du perçage s’approche des bornes des spécifications prend alors tout son sens. La mise en place d’un modèle expérimental multi-matériaux par les réseaux de neurones permet prédire la qualité du perçage réalisé pour une séquence d’empilement donnée. En utilisant une démarche similaire, un système de surveillance hors ligne du perçage multi-matériaux a été établi. Deux méthodes ont été développées : la méthode générale permettant de s’adapter à un grand nombre d’empilement et la méthode spécifique, plus précise, mais dont le domaine de validité se cantonne à une seul séquence. / New advances in the field of materials science have led to the emergence of new issues particularly concerning their holes. In the case of aeronautical structures, the drilling of multi-material panels CFRP / aluminum is just before final assembly. Pierced parts thus have a high added value. The interest can predict when the quality of the hole approaches the limits of the specifications takes a lot of sense. The establishment of an experimental model multi-materials by neural networks can predict the quality of the hole made for a given stacking sequence.Using a similar approach, a monitoring system offline drilling multi-materials has been established. Two methods have been developed: the general method to adapt to a large number of stacking and specific method, more accurate, but the range of validity is confined to a single sequence.

Page generated in 0.0596 seconds