• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 59
  • 18
  • 15
  • 10
  • 10
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 451
  • 145
  • 115
  • 92
  • 88
  • 86
  • 81
  • 78
  • 63
  • 53
  • 50
  • 47
  • 40
  • 39
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Radioaktive Stoffe

Schütt, Anke 02 January 2012 (has links) (PDF)
Versuche mit radioaktiven Stoffen im Schulunterricht unterliegen der Strahlenschutzverordnung. Die Broschüre enthält wichtige Schutzvorschriften, die von Schulleitern und Lehrkräften im Umgang mit natürlichen und künstlichen radioaktiven Stoffen zu beachten sind. Die Vorschriften betreffen Erwerb, Lagerung, Kennzeichnung und Dokumentation von radioaktiven Stoffen sowie die personelle Organisation des Strahlenschutzes an Schulen.
142

Determination of the photopeak detection efficiency of a HPGe detector, for volume sources, via Monte Carlo simulations.

Damon, Raphael Wesley January 2005 (has links)
The Environmental Radioactivity Laboratory (ERL) at iThemba LABS undertakes experimental work using a high purity germanium (HPGe) detector for laboratory measurements. In this study the Monte Carlo transport code, MCNPX, which is a general-purpose Monte Carlo N &minus / Particle code that extends the capabilities of the MCNP code, developed at the Los Alamos National Laboratory in New Mexico, was used. The study considers how various parameters such as (1) coincidence summing, (2) volume, (3) atomic number (Z) and (4) density, affects the absolute photopeak efficiency of the ERL&rsquo / s HPGe detector in a close geometry (Marinelli beaker) for soil, sand, KCl and liquid samples. The results from these simulations are presented here, together with an intercomparison exercise of two MC codes (MCNPX and a C++ program developed for this study) that determine the energy deposition of a point source in germanium spheres of radii 1 cm and 5 cm.<br /> <br /> A sensitivity analysis on the effect of the detector dimensions (dead layer and core of detector crystal) on the photopeak detection efficiency in a liquid sample and the effect of moisture content on the photopeak detection efficiency in sand and soil samples, was also carried out. This study has shown evidence that the dead layer of the ERL HPGe detector may be larger than stated by the manufacturer, possibly due to warming up of the detector crystal. This would result in a decrease in the photopeak efficiency of up to 8 % if the dead layer of the crystal were doubled from its original size of 0.05 cm. This study shows the need for coincidence summing correction factors for the gamma lines (911.1 keV and 968.1 keV) in the 232Th series for determining accurate activity concentrations in environmental samples. For the liquid source the gamma lines, 121.8 keV, 244.7 keV, 444.1 keV and 1085.5 keV of the 152Eu series, together with the 1173.2 keV and 1332.5 keV gamma lines of the 60Co, are particularly prone to coincidence summing. In the investigation into the effects of density and volume on the photopeak efficiency for the KCl samples, it has been found that the simulated results are in good agreement with experimental data. For the range of sample densities that are dealt with by the ERL it has been found that the drop in photopeak efficiency is less than 5 %. This study shows that the uncertainty of the KCl sample activity measurement due to the effect of different filling volumes in a Marinelli beaker is estimated in the range of 0.6 % per mm and is not expected to vary appreciably with photon energy. In the case of the effect of filling height on the efficiency for the soil sample, it was found that there is a large discrepancy in the trends of the simulated and experimental curves. This discrepancy could be a result of the use of only one sand sample in this study and therefore the homogeneity of the sample has to be investigated. The effect of atomic number has been found to be negligible for the soil and sand compositions for energies above 400 keV, however if the composition of the heavy elements is not properly considered when simulating soil and sand samples, the effect of atomic number on the absolute photopeak efficiency in the low energy (&lt / 400 keV) region can make a 14 % difference.
143

Radiometric study of soil: the systematic effects.

Joseph, Angelo Daniel. January 2007 (has links)
<p>The natural &sup2 / &sup3 / ⁸U, &sup2 / &sup3 / &sup2 / Th and ⁴&deg / K radioactive content of vineyard soil was measured with an in-situ gamma-ray detector. The activity concentration measured with the in-situ detector are normalized using the laboratory-determined activity concentrations of several samples from the vineyard site. To determine the activity concentration of a particular soil sample, the gamma-ray photopeak detection efficiencies are required. In this work, the detection efficiencies were derived for each soil sample using gamma-ray photopeaks associated with the radionuclide of &sup2 / &sup3 / ⁸U, &sup2 / &sup3 / &sup2 / Th present in the sample, and the ⁴&deg / K, 1460.8 keV gamma-ray peak, from KCl salt.</p>
144

A measurement of the branching fraction of the Ds meson to a muon and a neutrino /

Putz, John Yuri, January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. 100-102).
145

Production of [beta-gamma] coincidence spectra of individual radioxenon isotopes for improved analysis of nuclear explosion monitoring data

Haas, Derek Anderson, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
146

Descricao, caracteristicas e desempenho de um prototipo de contador de corpo inteiro para uso clinico

KIEFFER, JULIO 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:23:41Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:36Z (GMT). No. of bitstreams: 1 00617.pdf: 4446323 bytes, checksum: 2472e6b6e02afc6e4ba94b64e17ccf87 (MD5) / Tese (Doutoramento) / IEA/T / Faculdade de Medicina, Universidade de Sao Paulo - FM/USP
147

Simulations of Dynamic Nuclear Polarization pathways in large spin ensembles

Wisniewski, Daniel January 2017 (has links)
Dynamic Nuclear Polarization (DNP) is a method for signal enhancement in NMR, with numerous applications ranging from medicine to spectroscopy. Despite the success of applications of DNP, the understanding of the underlying theory is still limited. Much of the work on the theory of DNP has been carried out on small spin systems; this is a restriction due to the exponential growth of the Liouville space in quantum simulations. In the work described in this thesis, a methodology is presented by which this exponential scaling can be circumvented. This is done by mathematically projecting the DNP dynamics at resonance onto the Zeeman subspace of the density operator. This has successfully been carried out for the solid effect, cross effect and recently for the Overhauser effect in the solid state (see appendix A.4). The results are incoherent state-dependent dynamics, resembling classical behaviour. Such form of effective dynamics allows the use of kinetic Monte Carlo algorithms to simulate polarization dynamics of very large spin systems; orders of magnitude larger than has previously been possible. We verify the accuracy of the mathematical treatment of SE-DNP and CE-DNP, and illustrate the insight large spin-system simulations provide into the mechanism of DNP. For SE-DNP the mechanism of polarization to the bulk of spin systems is determined to be spin diffusion, and we carried out studies into the efficiency and performance of radicals, with an outlook on radical design. We also show that the Zeeman projection can be applied to heteronuclear spin systems if the nuclear species are close in frequency, and we present a formalism for simulating C-13 nuclear spin systems based on a linear rate approach, enabling simulations of thousands of spins in a matter of minutes. A study into the scaling of the kinetic Monte Carlo algorithm error, and the simulation run time, with respect to an increasing number of spins is also presented. For CE-DNP the error analysis led to establishing a parameter regime in which the effective dynamics are accurate. We show that spin diffusion is the mechanism of transfer of polarization to bulk nuclei. We also show how the effective rates for CE-DNP can be used to understand the efficiency of bi-radicals, point to optimisation possibilities, and hold a potential to aid in bi-radical design. We finally show large scale simulations for CE-DNP bi-radical systems with improved parameters; leading to very rapid build-up of nuclear polarization.
148

Magnetisation transfer effects at ultra high field MRI

Shah, Simon Michael January 2017 (has links)
Increased signal to noise ratio in ultra high field Magnetic Resonance Imaging (MRI) has allowed the development of quantitative imaging techniques and new contrast mechanisms, such as Chemical Exchange Saturation Transfer (CEST) to be probed. The development of CEST contrast imaging has involved overcoming a number of technical challenges associated with ultra high field MRI. The B1 transmit field was, and still is, a major challenge. Presented in this thesis, the B1 transmit field in regions of low B1 are improved with the use of dielectric pads and a simulation study shows that the overall B1 transmit field homogeneity is significantly improved when multi-transmit slice-selective RF spokes pulse sequences are used. Multiple methods have been developed to quantify the chemical exchange from slow exchanging proton pools seen in CEST contrast imaging. However, magnetisation transfer (MT) from the macromolecular bound pool contaminates current quantification methods, and presented in this thesis is a method whereby the CEST and MT are simultaneously saturated using dual frequency saturation pulses, allowing the CEST contrast in z-spectra to be separated from the MT and to enhance visualisation of the CEST effects. Despite the considerable interest in CEST, only one study has probed the CEST effects in blood, and interestingly high levels of CEST signals can be observed from the superior sagittal sinus. To investigate these effects, z-spectra from ex vivo blood samples considering the effects of oxygenation, haematocrit levels and cell structure were quantified. Quantification shows that the main source of the CEST signals was from the cells within the blood.
149

Novel acquisition strategies for dissolution dynamic nuclear polarisation

McGeorge-Henderson, Ben P. January 2017 (has links)
Dynamic Nuclear Polarisation (DNP) produced molecules with spin polarisation levels that are up to three orders of magnitude larger than their thermal equilibrium values. Most DNP mechanisms work at temperatures of 2 K and lower, meaning that the sample is stored in the solid-state. Combining DNP with a rapid temper- ature jump to room temperature allows liquid-state NMR analysis with a signal that is ve orders of magnitude higher than observed with thermal polarisation. However, the information obtained during a dissolution experiment is limited by the intrinsic liquid-state longitudinal relaxation of the spins of interest. is thesis looks to increase the information acquired in a number of ways. First, by devel- oping a new dissolution system for the dual iso-centre magnet it was possible to reproducibly perform enhanced NMR acquisition 600 ms following sample disso- lution. is has allowed the observation of hyperpolarised 13C spins with T1 times as low as 200 ms. Complimentary information can be obtained following sample dissolution by observing multiple spin species simultaneously. 13C and 15N spins are both polarised by microwave irradiation of the same frequency, so both can be analysed during a single dissolution DNP experiment. A novel probe has been used that contains six individual 13C microcoils. ese coils are separated in space and operate independently. is probe, in conjunction with dissolution DNP, can be used for observing dynamic molecular information on the time scale of 200 ms, however with further development this time scale should drop to less than 100 ms while maintaining a required minimum spectral resolution. Initial tests have been performed with both thermally polarised and hyperpolarised samples.
150

Dissipation as a resource for constrained dynamics in open many-body quantum systems

Everest, Benjamin January 2017 (has links)
This thesis studies non-equilibrium open quantum systems where the dissipation is crucial to the achievement of novel physical regimes. We focus on atomic systems which allow for the coupling of a ground state to a Rydberg state, relying on the strong interactions between Rydberg atoms to produce the collective behaviour that we aim to investigate. For atoms in an optical lattice undergoing standard dissipation forms, e.g. loss and dephasing, we find these simple settings allow for the production of models contained in the non-equilibrium realm. We start by looking at a system with engineered pair dissipation on a one-dimensional lattice. When the dissipation is strong relative to a tunnelling process it creates a quantum Zeno effect which projects the system onto a Zeno-subspace. This subspace is found to contain complexes which experience a binding due to the dissipation. The properties of these complexes are found to feature spin-orbit coupling and, in certain instances, a flat band. We then study what kinetically constrained models (KCMs) can be reproduced in a lattice system. KCMs are models which typically feature trivial steady states, but a complex relaxation dynamics. These models appear in the fields of glasses and soft matter physics. We find a general framework for the consideration of a quantum Hamiltonian and a classical potential with strong dephasing noise. We then focus on a model mimicking volume excluded KCMs and find characteristic constrained behaviour, such as ergodicity breaking. We apply this framework to the decay of a many-body localised state in an open system with interactions in which we find the decay to be classical in the two interaction limits. For weak interactions, it follows a stretched exponential form due to pair relaxation, while for strong interactions the decay follows a compressed exponential, now being modelled as an Avrami process due to the correlated relaxation. We also find that on-site loss only affects the strong interacting limit. We then move on to the study of universal non-equilibrium behaviour in the directed percolation (DP) class. We consider on-site atomic loss and gain as a substitute for the standard decay channel. We show that this replaces the absorbing state with an enlarged absorbing space, leading to a loss of the DP transition at lower average densities. This class of DP-like systems has received little study, and we present a method of experimentally realising it in current set-ups. We finish with a look at a quantum DP model, where we consider its quantum and classical limits. We find that the transition changes from first to second order as the system becomes more classical, featuring a bi-critical point. We then numerically demonstrate that the same transitions are visible in idealised and Rydberg models.

Page generated in 0.0404 seconds