691 |
New approaches to understand conductive and polar domain walls by Raman spectroscopy and low energy electron microscopy / Nouvelles approches pour comprendre les parois de domaines conductrices et les parois de domaines polaires par spectroscopie Raman et microscopie électronique de faible énergieNataf, Guillaume F. 05 October 2016 (has links)
Ce travail de thèse porte sur les propriétés structurales et électroniques des parois de domaines ferroïques ; il a pour objectif une meilleure compréhension des mécanismes de conduction dans les parois de domaines du niobate de lithium d’une part, et de la polarité des parois de domaine dans le titanate de calcium d’autre part. La première partie est consacrée aux interactions entre les défauts et les parois de domaine dans le niobate de lithium. L’observation d’une relaxation diélectrique de faible énergie d’activation et l’analyse de son comportement sous l’effet d’un recuit dans des échantillons avec et sans parois nous conduisent à proposer que les parois de domaines stabilisent des états polaroniques. Nous rapportons aussi l'évolution de modes Raman dans des échantillons congruents de niobate de lithium dopés de manière croissante en magnésium. Nous identifions des décalages en fréquence spécifiques aux parois de domaines. Les parois de domaines apparaissent alors comme des lieux de stabilisation des défauts polaires. Nous utilisons la microscopie électronique miroir (MEM) et la microscopie électronique de faible énergie (LEEM) pour caractériser les domaines et parois de domaines à la surface du niobate de lithium dopé magnésium. Nous démontrons que les réglages de la distance focale peuvent être utilisés pour déterminer la polarisation du domaine. Aux parois de domaines, un champ électrique latéral, provenant de différents états de charge de surface, est mis en évidence. Dans une seconde partie, nous étudions la polarité des parois de domaine dans le titanate de calcium. Nous utilisons la spectroscopie de résonance piézo-électrique pour mettre en évidence l’excitation de résonances élastiques par un signal électrique, ce qui est interprété comme une réponse piézoélectrique des parois de domaines. Une image directe des parois de domaine du titanate de calcium est obtenue par LEEM, et montre une différence de potentiel de surface entre domaines et parois. Ce contraste peut être modifié sous l’effet d’injection d’électrons, par un effet d’écrantage des charges de polarisation aux parois. / We investigate the structural and electronic properties of domain walls to achieve a better understanding of the conduction mechanisms in domain walls of lithium niobate and the polarity of domain walls in calcium titanate. In a first part, we discuss the interaction between defects and domain walls in lithium niobate. A dielectric resonance with a low activation energy is observed, which vanishes under thermal annealing in monodomain samples while it remains stable in periodically poled samples. Therefore we propose that domain walls stabilize polaronic states. We also report the evolution of Raman modes with increasing amount of magnesium in congruent lithium niobate. We identified specific frequency shifts of the modes at the domain walls. The domains walls appear then as spaces where polar defects are stabilized. In a second step, we use mirror electron microscopy (MEM) and low energy electron microscopy (LEEM) to characterize the domains and domain walls at the surface of magnesium-doped lithium niobate. We demonstrate that out of focus settings can be used to determine the domain polarization. At domain walls, a local stray, lateral electric field arising from different surface charge states is observed. In a second part, we investigate the polarity of domain walls in calcium titanate. We use resonant piezoelectric spectroscopy to detect elastic resonances induced by an electric field, which is interpreted as a piezoelectric response of the walls. A direct image of the domain walls in calcium titanate is also obtained by LEEM, showing a clear contrast in surface potential between domains and walls. This contrast is observed to change reversibly upon electron irradiation due to the screening of polarization charges at domain walls.
|
692 |
Study of Cell Penetrating Peptide Uptake and Cancer Cell Discrimination with Raman Spectroscopy and MicroscopyUnknown Date (has links)
Cell penetrating peptides (CPPs) are short sequences of amino acids that excel in
crossing the cellular membrane without inducing cytotoxicity Interest in these peptides
stem from their ability to be attached, and grant their penetrating properties to, a variety
of cargo In this work we have combined the application of Confocal Raman Microscopy
(CRM) and Atomic Force Microscopy for the first time to examine the interactions of
unlabeled Transportan (TP), one of the most well studied CPPs, with mammalian cells
CRM’s capability to discriminate control and treated cell groups was verified by principal
component analysis (PCA) and linear discriminant analysis (LDA) and was 93-100%
accurate We’ve determined that at a concentration of 20 μM TP enters cells through a
non-endocytotic mechanism, has a high affinity for the cytoplasm and membranes, and
results in a significant increase in cellular stiffness Our work provides the first direct
evidence of this cell-stiffening phenomenon SFTI-1, the smallest member of a bicyclic, cysteine rich class of CPPs, was
examined by CRM to determine the potential role of cyclic structure on cellular uptake
The peptide, along with monocyclic and linear analogs was heavy isotope labeled and
incubated with mammalian cells at numerous concentrations and timespans Our work is
the first SFTI-1 uptake study forgoing the use of fluorophore conjugates, which have
been linked to artificial cellular uptake We demonstrate herein the absence of any CRM
detectable uptake, providing the first evidence that SFTI-1 may not be a CPP
Finally, CRM was applied to the discrimination of normal and basal cell
carcinoma cells obtained from the same donor The use of patient matched cells avoids
the normal biochemical variations that exist among individuals, ensuring that
discrimination is based solely on the cell’s diseased state CRM spectra, analyzed by
PCA and LDA, were capable of spectral discrimination with 100% accuracy Major
differences in the cancerous cells were an increase in lipids and nucleic acids, and an
overall decrease in protein We also demonstrate an enhancement in Raman signal
through the use of an aluminum foil substrate, providing a practical approach for
measuring cells with thin morphologies / Includes bibliography / Dissertation (PhD)--Florida Atlantic University, 2016 / FAU Electronic Theses and Dissertations Collection
|
693 |
Croissance cristalline et étude par spectroscopie Raman des orthochromites de terres rares RCr03 (R=terre rare) / Crystal growth and polarized Raman studies of rare earth carthochromites RGO3 (R = rare earth)Camara, Nimbo 02 April 2019 (has links)
Les multiferroïques sont entre autres des matériaux possédant à la fois un ordre magnétique et un ordre ferroélectrique, le plus souvent couplés entre eux (couplage magnétoélectrique). Ce caractère multifonctionnel scientifiquement et technologiquement prometteur, rend ces matériaux plus attrayants, d’autant plus que l'aimantation peut être contrôlée par l'application de champ électrique, ou que la polarisation électrique peut être contrôlée par un champ magnétique. D’un point de vue technologique, ces matériaux ouvrent la voie à des applications dans les domaines de l’électronique de spins, des capteurs magnétoélectriques, des mémoires de stockage, … D’un point de vue scientifique, ce sont les questions fondamentales relative à la compréhension des mécanismes gouvernant la présence de l'ordre ferroélectrique dans un matériau magnétique, qui expliquent leur attractivité. / Multiferroics are materials exhibiting in the same phase, at least two ferroics orders such as magnetism and ferroelectricity, which is furthermore extended when these orders are coupled (magnetoelectric coupling). This multifunctionality is scientifically and technologically promising, and makes multiferroics more attractive, especially since the magnetization can be controlled by the application of an electric field, or the polarization can be controlled by a magnetic field. From a technological point of view, these materials open pathways for many applications in spintronics, magnetoelectric sensors, data storage memories, ... From a scientific point of view, their attractiveness is explained by the fact that many fundamental questions related to the mechanisms of the occurrence of ferroelectricity in a magnetic material, are still unanswered.
|
694 |
Studium molekulární struktury různých forem vodivých polymerů metodami FTIR a Ramanovy spektroskopie / The Study of the Molecular Structure of Various Forms of Conducting Polymers using FTIR and Raman SpectroscopiesMorávková, Zuzana January 2013 (has links)
In this Thesis, the structure of thin films formed by a conducting polymer, polyaniline, was studied using mainly infrared and Raman spectroscopies. That led to the study of aniline oligomers. The oligomers play a key role in the formation of thin films and nanostructures of polyaniline. Furthermore, the Thesis deals with the carbonization of various forms of polyaniline (granular polyaniline base, thin films of polyaniline salt, multi-wall carbon nanotubes coated with polyaniline salt or base, polyaniline nanotubes/nanorods prepared in the presence of ethanol). The two topics, aniline oligomers and carbonization of polyaniline, are connected by a paper concerning the carbonization of microspheres formed during oxidation of aniline in alkaline medium. Optical microscopy, transmission and scanning electron microscopy, UV-Vis spectroscopy, spectroscopic ellipsometry, wide angle X-ray scattering and thermogravimetric analysis were used.
|
695 |
Ramanuv rozptyl v olovnatých relaxorových ferroelektrikach / Lead-based relaxor ferroelectrics by Raman scatteringRafalovskyi, Iegor January 2017 (has links)
Title: Lead-based relaxor ferroelectrics by Raman scattering Author: Iegor Rafalovskyi Institute: Institute of Physics of the Czech Academy of Sciences Supervisor: Ing. Jiří Hlinka, Ph.D., Department of Dielectrics, Institute of Physics of the Czech Academy of Sciences Abstract: The following work is dedicated to measurement and analysis of Raman scat- tering spectra of different perovskite ferroelectrics, mainly lead-based relaxors in the form of bulk and thin films. Investigation of single crystal MPB composition PMN-0.32PT has shown that procedure of zero-field heating of previously field-cooled sample leads to sta- bilization of heterophase pattern with 10-100 µm parallel stripes of alternating tetragonal and rhombohedral (rhombohedral-like) phases. Another point of interest investigated in PMN-0.32PT is rhombohedral to tetragonal phase transition induced by electric field. The domain structure with 90-degree domain walls has been observed in relaxor based composition PFN-0.38PT. Adjacent domains were investigated by polarized Raman scat- tering to confirm their structure and symmetry. Relaxor ferroelectric PSN has shown totally different behavior in polarized Raman spectra if studied in the form of single crystal or epitaxial thin film. The normalized cross-polarized intensity of 810 cm−1 band measured in...
|
696 |
Komplexy miRNA s cílovou RNA sekvencí / miRNA complexes with the target RNA sequenceHomolka, Radim January 2018 (has links)
miRNAs are short non-coding RNA molecules which play role in post-transcriptional regulation of gene expression. Thus, miRNAs are related to a variety of physiological processes and diseases, e.g. some tumours or viral infections. In this diploma thesis we studied temperature-induced dissociation of complexes that simulated pairing of miRNA with target mRNA. For these purposes we used UV absorption spectroscopy and Raman spectroscopy. Measured spectra were then treated by means of a factor analysis. The aim of the thesis was to determine thermodynamic parameters of the complexes dissociation and to clarify how inner loops and bulges affect the stability of oligonucleotide duplexes. Also, we have tested the suitability of the used approach for study of oligonucleotide complexes. We have shown that factor analysis of temperature dependent UV absorption spectra is a proper base to determine thermodynamic parameters of the duplex dissociation. Raman spectra were affected by large errors, nevertheless they enabled to observe some structural changes related to the transition. It has been shown that the bulge loop present in the studied complex reduces both its flexibility and the energetic preference of its formation.
|
697 |
Cluster tool for in situ processing and comprehensive characterization of thin films at high temperaturesWenisch, R., Lungwitz, F., Hanf, D., Heller, R., Zscharschuch, J., Hübner, R., von Borany, J., Abrasonis, G., Gemming, S., Escobar-Galindo, R., Krause, M. 07 May 2019 (has links)
A new cluster tool for in situ real-time processing and depth-resolved compositional, structural and optical characterization of thin films at temperatures from -100 to 800 °C is described. The implemented techniques comprise magnetron sputtering, ion irradiation, Rutherford backscattering spectrometry, Raman spectroscopy and spectroscopic ellipsometry. The capability of the cluster tool is demonstrated for a layer stack MgO/ amorphous Si (~60 nm)/ Ag (~30 nm), deposited at room temperature and crystallized with partial layer exchange by heating up to 650°C. Its initial and final composition, stacking order and structure were monitored in situ in real time and a reaction progress was defined as a function of time and temperature.
|
698 |
EXAMINATION OF LITHIUM-ION BATTERY PERFORMANCE DEGRADATION UNDER DYNAMIC ENVIRONMENT AND EARLY DETECTION OF THERMAL RUNAWAY WITH INTERNAL SENSOR MEASUREMENTBing Li (9690776) 15 December 2020 (has links)
Performance degradation of lithium-ion batteries (LIBs) from in-service abuse was analyzed using novel dynamic abuse tests and sensor-based in-situ monitoring of battery state of health (SOH). The relation between dynamic impact and structure changes of LiCoO<sub>2</sub> (LCO) electrode was analyzed through a nano-impact test directly applied to the electrode and Raman imaging. After the electrode structure damage induced by the dynamic loading was analyzed, the performance of the LIBs with the abused electrodes was evaluated to establish the relation between the number of impact cycles and LIB performance degradation. The mechanism of impact related LIB capacity decrease was analyzed, and the capacity change can be predicted based on the impact abuse history using this approach. In order to provide more detailed information on the battery performance degradation caused by the in-service dynamic loads, a dynamic aging testing platform was designed to simulate in-service vibration and impact experienced by the LIBs. Based on the lessons learned, a sensor network was constructed to provide a comprehensive in-situ evaluation of the SOH of commercial batteries. Mechanisms of LIB capacity fade, temperature increase, and cell deformation from cycling in representative dynamic environments were analyzed and correlated with theoretical predictions. Difference between the aging of a battery pack and that of a single cell was also investigated, which presented the influence of current imbalance on the SOH decay of battery packs. SEM imaging, Raman imaging, and electrochemical impedance spectroscopy (EIS) analysis were also applied to support the sensor network measurements.<br><div> In order to provide an early detection of catastrophic LIB failure such as thermal runaway, an internal resistance temperature detector (RTD) based electrode temperature monitoring approach was developed. By embedding the RTD into LIBs with 3D printing technique, electrode temperature can be collected during ordinary cycling and electrical abuse of LIBs, such as external short circuit and overcharge. The internal RTD presented high measuring efficiency, while there was no interference between the sensor measurement and battery operation. The internal RTD detected the short circuit event and overcharge failure prior of time: the efficiency of the internal RTD was 6-10 times higher than the external RTD in the short circuit test. This provided the chance for early detection and prevention of catastrophic LIB failures. Besides, with the detailed information on electrode temperature evolution during LIB thermal runaway available, the internal RTD also provided the chance to enhance the understanding of the thermal runaway mechanism.</div>
|
699 |
Vapor-liquid-equilibria of fuel-nitrogen systems at engine-like conditions measured with Raman spectroscopy in micro capillariesKlima, Tobias C., Braeuer, Andreas S. 21 December 2020 (has links)
A fuel, here ethanol or decane, and nitrogen are fed at elevated pressure and temperature through a micro capillary of fused silica. The flow inside the capillary is characterized by alternating liquid- and vapor-phase segments that accommodate to thermodynamic equilibrium at the set temperature and pressure. The composition of the equilibrated liquid or vapor segments is measured in situ and remotely inside the micro capillary by Raman spectroscopy. Temperature-composition (Tx) vapor-liquid equilibria were measured for pressures between 3 MPa and 8 MPa and up to the highest mixture critical temperature of 593 K in this pressure range. Comparison to the scarce literature data for these conditions and to the GERG-2008 model, resembling the conditions in IC-engines at the time of injection, is shown.
|
700 |
FT-NMR and Raman Spectroscopic Studies of Molecular Dynamics in LiquidsWang, Kuen-Shian 12 1900 (has links)
NMR relaxation and Raman lineshape analysis are well known methods for the study of molecular reorientational dynamics in liquids. The combination of these two methods provides another approach to tackle the characterization of molecular dynamics in liquids. Investigations presented here include (1) NMR relaxation study of polycyclic compounds in solution, (2) the study of nitromethane reorientational dynamics using the NMR and Raman methods, and (3) Raman lineshape analysis of reorientation hexafluorobenzene/benzene mixtures.
|
Page generated in 0.1909 seconds