• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of a high performance soft x-ray emission spectrometer for the REIXS beamline at the Canadian Light Source

Muir, David Ian 28 November 2006
The optical design of a soft X-ray (90-1100~eV) emission spectrometer for the Resonant Elastic and Inelastic X-ray Scattering (REIXS) beamline to be implemented at the CLS is presented. An overview of soft X-ray optical theory as it relates to diffraction gratings is given. The initial constraints and the process that led to this design are outlined. Techniques and software tools that were developed, using ray-tracing and diffraction grating efficiency calculations, are discussed. The analysis completed with these tools to compare existing soft X-ray emission spectrometer designs is presented. Based on this analysis, a new design with superior performance for this application is proposed and reviewed. This design employs Rowland circle geometry to achieve a resolving power in excess of 2,500 in the range of interest. In addition, a novel design is proposed for a larger extremely high resolution spectrometer which will provide resolving powers exceeding 10,000 throughout the higher end of this range. A review is given of research into the components, manufacturing techniques and tolerances that will be required to produce this spectrometer.
2

Design of a high performance soft x-ray emission spectrometer for the REIXS beamline at the Canadian Light Source

Muir, David Ian 28 November 2006 (has links)
The optical design of a soft X-ray (90-1100~eV) emission spectrometer for the Resonant Elastic and Inelastic X-ray Scattering (REIXS) beamline to be implemented at the CLS is presented. An overview of soft X-ray optical theory as it relates to diffraction gratings is given. The initial constraints and the process that led to this design are outlined. Techniques and software tools that were developed, using ray-tracing and diffraction grating efficiency calculations, are discussed. The analysis completed with these tools to compare existing soft X-ray emission spectrometer designs is presented. Based on this analysis, a new design with superior performance for this application is proposed and reviewed. This design employs Rowland circle geometry to achieve a resolving power in excess of 2,500 in the range of interest. In addition, a novel design is proposed for a larger extremely high resolution spectrometer which will provide resolving powers exceeding 10,000 throughout the higher end of this range. A review is given of research into the components, manufacturing techniques and tolerances that will be required to produce this spectrometer.
3

A Soft X-Ray Emission Endstation for the Canadian Light Source

2013 October 1900 (has links)
Based on a previously completed design for a soft X-ray (50-1100 eV) emission spectrometer, an endstation was constructed for the Resonant Elastic and Inelastic X-ray Scattering (REIXS) beamline at the CLS. The optical design employed techniques and software tools developed in-house using ray-tracing and diffraction grating efficiency calculations to analyze and compare existing designs and to propose a new design with superior performance. This design employs Rowland circle geometry to achieve a theoretical resolving power in excess of 2,500 in our range of interest. In addition, a novel optical design for a larger extremely high resolution spectrometer has been completed to provide theoretical resolving powers exceeding 10,000 throughout the higher end of the spectrum. To accommodate this optical design a completely new mechanical design was required, involving significant mechanical, electrical, vacuum and software engineering. Countless custom fabricated parts were required along with numerous o -the-shelf secondary instruments and systems. All told, this entirely student-managed project has cost over $1.5M and taken over 5 years. Construction is finally complete and the endstation is currently being commissioned. Necessary design changes made during the mechanical design process resulting in the selection of a more suitable, but lower resolution, detector. This reduced the theoretical maximum resolving power to 1,800 for the first order gratings and roughly 5,000 for the third order gratings. Commissioning is still underway, but first order resolutions in the range of 1,000 - 2,000 have been recorded as have third order resolutions exceeding 4,000. Publication quality data has been collecting by members of this research group and invited external users have successfully grown and measured samples here. Two of the optical elements required rework and upon their delivery the system commissioning will be completed and peer-reviewed access will begin.

Page generated in 0.0163 seconds