• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 3
  • 1
  • Tagged with
  • 26
  • 11
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coupling RELAP5-3D and Fluent to analyze a Very High Temperature Reactor (VHTR) outlet plenum

Anderson, Nolan Alan 30 October 2006 (has links)
The Very High Temperature Reactor (VHTR) system behavior should be predicted during normal operating conditions and during transient conditions. To predict the VHTR system behavior there is an urgent need for development, testing and validation of design tools to demonstrate the feasibility of the design concepts and guide the improvement of the plant components. One of the identified design issues for the gas-cooled reactor is the thermal mixing of the coolant exiting the core into the outlet plenum. Incomplete thermal mixing may give rise to thermal stresses in the downstream components. This analysis was performed by coupling a RELAP5-3D© VHTR model to a Fluent outlet plenum model. The RELAP5 VHTR model outlet conditions provide the inlet boundary conditions to the Fluent outlet plenum model. By coupling the two codes in this manner, the important three-dimensional flow effects in the outlet plenum are well modeled without having to model the entire reactor with a computationally expensive code such as Fluent. The two codes were successfully coupled. The values of pressure, mass flow rate and temperature across the coupled boundary showed only slight differences. The coupling tool used in this analysis can be applied to many different cases requiring detailed three-dimensional modeling in a small portion of the domain.
2

Krafter på rörsystem vid transient flöde : En jämförelse mellan RELAP5 och Fluent

Kauppi, Kalle January 2014 (has links)
At Forsmarks Kraftgrupp AB (FKA) forces on pipe systems due to transient flow are frequently calculated as a step to verify their structural integrity. In nuclear industries these forces are often calculated with a one dimensional thermal-hydraulic analysis-code called RELAP5. When calculations regarding more complex geometries are needed, the three dimensional code Fluent is often used. This code is highly time consuming and requires large computational power. This projects aim is to compare calculations of pressure, flow and forces carried out by RELAP5 and Fluent for an arbitrary pipe section during transient flow conditions. This has been accomplished by constructing a simple geometry for which a transient flow is simulated in both programs. Forces have been calculated via pressure difference over the pipe section and also by use of differentiated mass flow. In Fluent k-ω SST and VLES turbulence models have been used and also two different numerical schemes in order to investigate their influence on the results. The results show that forces calculated with RELAP5 and Fluent are in parity. Small differences in mass flow and pressure appear when comparing between the codes. This probably stem from different handling of losses in RELAP5 and Fluent. The differences have no effect on forces calculated since the differentiated mass flow and pressure difference used are equivalent for both codes. / Vid Forsmarks Kraftgrupp AB (FKA) beräknas ofta krafter i rörsystem uppkomna av transienta flöden som ett steg i att verifiera systemens strukturella integritet. Inom kärnkraftsindustrin används vanligen det endimensionella termohydrauliska analysprogrammet RELAP5 vid utförande av transienta rörflödesberäkningar. Vid beräkningar med en mer komplex geometri använder FKA bl a det tredimensionella programmet Fluent. Detta program är generellt tidskrävande samt ställer stora krav på datorkapacitet. Målet med projeketet är att jämföra beräkningar av tryck, flöden och krafter, utförda med RELAP5 och Fluent, på en godtycklig rörsektion under transienta flödesvillkor. Ett transient flöde i en enklare geometri har simulerats i både RELAP5 och Fluent. Krafter har beräknats med två olika metoder, dels med tryckskillnad över rörsektionen samt även med massflödesderivatan. I Fluent har turbulensen modellerats med k-ω SST och VLES,två olika numeriska scheman har även använts för undersökning av dess påverkan på resultaten. Resultaten visar att krafter som beräknats med RELAP5 och Fluent är i paritet med varandra. Generellt är det små skillnader vid jämförelse av massflöde och tryck mellan programmen. Dessa bedöms härröra från olika behandling av förluster i RELAP5 och Fluent. Skillnaderna har ingen inverkan på de beräknade krafterna eftersom massflödesderivatan och tryckdifferensen som används är likvärdiga för båda programmen.
3

PCRELAP5 - Programa de cálculo para os dados de entrada do código RELAP5 / PCRELAP5 - Data calculation program for RELAP 5 code

Silvestre, Larissa Jácome Barros 24 February 2016 (has links)
Após os acidentes nucleares ocorridos no mundo, critérios e requisitos extremamente rígidos para a operação das instalações nucleares foram determinados pelos órgãos internacionais que regulam essas instalações. A partir da ocorrência destes eventos, as operadoras de plantas nucleares necessitam simular alguns acidentes e transientes, por meio de programas computacionais específicos, para obter a licença de operação de uma planta nuclear. Com base neste cenário, algumas ferramentas computacionais sofisticadas têm sido utilizadas como o Reactor Excursion and Leak Analysis Program (RELAP5), que é o código mais utilizado para a análise de acidentes e transientes termo-hidráulicos em reatores nucleares no Brasil e no mundo. Uma das maiores dificuldades na simulação usando o código RELAP5 é a quantidade de informações geométricas da planta necessárias para a análise de acidentes e transientes termo-hidráulicos. Para a preparação de seus dados de entrada é necessário um grande número de operações matemáticas para calcular a geometria dos componentes. Assim, a fim de realizar estes cálculos e preparar dados de entrada para o RELAP5, um pré-processador matemático amigável foi desenvolvido, neste trabalho. O Visual Basic for Applications (VBA), combinado com o Microsoft Excel, foi utilizado e demonstrou ser um instrumento eficiente para executar uma série de tarefas no desenvolvimento desse pré-processador. A fim de atender as necessidades dos usuários do RELAP5, foi desenvolvido o Programa de Cálculo do RELAP5 PCRELAP5 onde foram codificados todos os componentes que constituem o código, neste caso, todos os cartões de entrada inclusive os opcionais de cada um deles foram programados. Adicionalmente, uma versão em inglês foi criada para PCRELAP5. Também um design amigável do PCRELAP5 foi desenvolvido com a finalidade de minimizar o tempo de preparação dos dados de entrada e diminuir os erros cometidos pelos usuários do código RELAP5. Nesse trabalho, a versão final desse pré-processador foi aplicada com sucesso para o Sistema de Injeção de Emergência (SIE) da usina Angra 2. / Nuclear accidents in the world led to the establishment of rigorous criteria and requirements for nuclear power plant operations by the international regulatory bodies. By using specific computer programs, simulations of various accidents and transients likely to occur at any nuclear power plant are required for certifying and licensing a nuclear power plant. Based on this scenario, some sophisticated computational tools have been used such as the Reactor Excursion and Leak Analysis Program (RELAP5), which is the most widely used code for the thermo-hydraulic analysis of accidents and transients in nuclear reactors in Brazil and worldwide. A major difficulty in the simulation by using RELAP5 code is the amount of information required for the simulation of thermal-hydraulic accidents or transients. The preparation of the input data requires a great number of mathematical operations to calculate the geometry of the components. Thus, for those calculations performance and preparation of RELAP5 input data, a friendly mathematical preprocessor was designed. The Visual Basic for Application (VBA) for Microsoft Excel demonstrated to be an effective tool to perform a number of tasks in the development of the program. In order to meet the needs of RELAP5 users, the RELAP5 Calculation Program (Programa de Cálculo do RELAP5 PCRELAP5) was designed. The components of the code were codified; all entry cards including the optional cards of each one have been programmed. In addition, an English version for PCRELAP5 was provided. Furthermore, a friendly design was developed in order to minimize the time of preparation of input data and errors committed by users. In this work, the final version of this preprocessor was successfully applied for Safety Injection System (SIS) of Angra 2.
4

PCRELAP5 - Programa de cálculo para os dados de entrada do código RELAP5 / PCRELAP5 - Data calculation program for RELAP 5 code

Larissa Jácome Barros Silvestre 24 February 2016 (has links)
Após os acidentes nucleares ocorridos no mundo, critérios e requisitos extremamente rígidos para a operação das instalações nucleares foram determinados pelos órgãos internacionais que regulam essas instalações. A partir da ocorrência destes eventos, as operadoras de plantas nucleares necessitam simular alguns acidentes e transientes, por meio de programas computacionais específicos, para obter a licença de operação de uma planta nuclear. Com base neste cenário, algumas ferramentas computacionais sofisticadas têm sido utilizadas como o Reactor Excursion and Leak Analysis Program (RELAP5), que é o código mais utilizado para a análise de acidentes e transientes termo-hidráulicos em reatores nucleares no Brasil e no mundo. Uma das maiores dificuldades na simulação usando o código RELAP5 é a quantidade de informações geométricas da planta necessárias para a análise de acidentes e transientes termo-hidráulicos. Para a preparação de seus dados de entrada é necessário um grande número de operações matemáticas para calcular a geometria dos componentes. Assim, a fim de realizar estes cálculos e preparar dados de entrada para o RELAP5, um pré-processador matemático amigável foi desenvolvido, neste trabalho. O Visual Basic for Applications (VBA), combinado com o Microsoft Excel, foi utilizado e demonstrou ser um instrumento eficiente para executar uma série de tarefas no desenvolvimento desse pré-processador. A fim de atender as necessidades dos usuários do RELAP5, foi desenvolvido o Programa de Cálculo do RELAP5 PCRELAP5 onde foram codificados todos os componentes que constituem o código, neste caso, todos os cartões de entrada inclusive os opcionais de cada um deles foram programados. Adicionalmente, uma versão em inglês foi criada para PCRELAP5. Também um design amigável do PCRELAP5 foi desenvolvido com a finalidade de minimizar o tempo de preparação dos dados de entrada e diminuir os erros cometidos pelos usuários do código RELAP5. Nesse trabalho, a versão final desse pré-processador foi aplicada com sucesso para o Sistema de Injeção de Emergência (SIE) da usina Angra 2. / Nuclear accidents in the world led to the establishment of rigorous criteria and requirements for nuclear power plant operations by the international regulatory bodies. By using specific computer programs, simulations of various accidents and transients likely to occur at any nuclear power plant are required for certifying and licensing a nuclear power plant. Based on this scenario, some sophisticated computational tools have been used such as the Reactor Excursion and Leak Analysis Program (RELAP5), which is the most widely used code for the thermo-hydraulic analysis of accidents and transients in nuclear reactors in Brazil and worldwide. A major difficulty in the simulation by using RELAP5 code is the amount of information required for the simulation of thermal-hydraulic accidents or transients. The preparation of the input data requires a great number of mathematical operations to calculate the geometry of the components. Thus, for those calculations performance and preparation of RELAP5 input data, a friendly mathematical preprocessor was designed. The Visual Basic for Application (VBA) for Microsoft Excel demonstrated to be an effective tool to perform a number of tasks in the development of the program. In order to meet the needs of RELAP5 users, the RELAP5 Calculation Program (Programa de Cálculo do RELAP5 PCRELAP5) was designed. The components of the code were codified; all entry cards including the optional cards of each one have been programmed. In addition, an English version for PCRELAP5 was provided. Furthermore, a friendly design was developed in order to minimize the time of preparation of input data and errors committed by users. In this work, the final version of this preprocessor was successfully applied for Safety Injection System (SIS) of Angra 2.
5

Relap5-3d model validation and benchmark exercises for advanced gas cooled reactor application

Moore, Eugene James Thomas 16 August 2006 (has links)
High-temperature gas-cooled reactors (HTGR) are passively safe, efficient, and economical solutions to the world’s energy crisis. HTGRs are capable of generating high temperatures during normal operation, introducing design challenges related to material selection and reactor safety. Understanding heat transfer and fluid flow phenomena during normal and transient operation of HTGRs is essential to ensure the adequacy of safety features, such as the reactor cavity cooling system (RCCS). Modeling abilities of system analysis codes, used to develop an understanding of light water reactor phenomenology, need to be proven for HTGRs. RELAP5-3D v2.3.6 is used to generate two reactor plant models for a code-to-code and a code-to-experiment benchmark problem. The code-to-code benchmark problem models the Russian VGM reactor for pressurized and depressurized pressure vessel conditions. Temperature profiles corresponding to each condition are assigned to the pressure vessel heat structure. Experiment objectives are to calculate total thermal energy transferred to the RCCS for both cases. Qualitatively, RELAP5-3D’s predictions agree closely with those of other system codes such as MORECA and Thermix. RELAP5-3D predicts that 80% of thermal energy transferred to the RCCS is radiant. Quantitatively, RELAP5-3D computes slightly higher radiant and convective heat transfer rates than other system analysis codes. Differences in convective heat transfer rate arise from the type and usage of convection models. Differences in radiant heat transfer stem from the calculation of radiation shape factors, also known as view or configuration factors. A MATLAB script employs a set of radiation shape factor correlations and applies them to the RELAP5-3D model. This same script is used to generate radiation shape factors for the code-toexperiment benchmark problem, which uses the Japanese HTTR reactor to determine temperature along the outside of the pressure vessel. Despite lacking information on material properties, emissivities, and initial conditions, RELAP5-3D temperature trend predictions closely match those of other system codes. Compared to experimental measurements, however, RELAP5-3D cannot capture fluid behavior above the pressure vessel. While qualitatively agreeing over the pressure vessel body, RELAP5-3D predictions diverge from experimental measurements elsewhere. This difference reflects the limitations of using a system analysis code where computational fluid dynamics codes are better suited.
6

Zero gravity two-phase flow regime transition modeling compared with data and relap5-3d predictions

Ghrist, Melissa Renee 15 May 2009 (has links)
This thesis compares air/water two-phase flow regime transition models in zero gravity with data and makes recommendations for zero gravity models to incorporate into the RELAP5-3D thermal hydraulic computer code. Data from numerous researchers and experiments are compiled into a large database. A RELAP5-3D model is built to replicate the zero gravity experiments, and flow regime results from the RELAP5-3D code are compared with data. The comparison demonstrates that the current flow regime maps used in the computer code do not scale to zero gravity. A new flow regime map is needed for zero gravity conditions. Three bubbly-to-slug transition models and four slug-to-annular transition models are analyzed and compared with the data. A mathematical method is developed using least squares to objectively compare the accuracy of the models with the data. The models are graded by how well each represents the data. Agreement with data validates the recommendations made for changes to the RELAP5-3D computer code models. For smaller diameter tubes, Dukler’s bubbly-to-slug model best fits the data. For the larger tubes, the Drift Flux model is a better fit. The slug-to-annular transition is modeled best by Creare for small tubes and Reinarts for larger tubes. A major finding of this thesis work is that more air/water data is needed at equally distributed flow velocities and a greater variety of tube diameters. More data is specifically needed in the predicted transition regions made in this study.
7

RELAP5 Model Benchmark for Thermal Performance of DRACS Test Facilities

Lin, Hsun-Chia 24 October 2016 (has links)
No description available.
8

FastLAP: desenvolvimento de um pré-processador gráfico visual para o código RELAP5 / FastLAP: development of a graphic visual preprocessor for RELAP5

Monaco, Daniel Fernando 18 June 2019 (has links)
As energias limpas têm contribuído para o aumento de investimento e pesquisas em energia nuclear na última década. No entanto, as ocorrências dos acidentes nucleares ao longo da história ainda geram insegurança para a população em geral. Os órgãos reguladores têm aumentado as exigências de segurança em plantas nucleares e, devido a isto, vêm fazendo esforços na realização de simulações numéricas com programas computacionais de análise de acidentes em instalações nucleares, com a finalidade de garantir a segurança da planta e da população do entorno, antes mesmo de sua construção. No Brasil, para atender as exigências do órgão regulador brasileiro, a administradora dos reatores nucleares nacionais deve apresentar um estudo termo-hidráulico na área de análise de acidentes e transientes operacionais para as instalações nucleares. Isto é feito com a finalidade de licenciar as plantas nucleares, utilizando ferramentas computacionais apropriadas, tais como o código RELAP5. Esse programa computacional é muito eficiente na simulação de acidentes em usinas nucleares, mas não é muito amigável quanto à inserção de seus dados de entrada. Essa dificuldade motivou o desenvolvimento de pré-processadores para auxiliar a preparação dos dados geométricos de plantas nucleares, que é uma parte dos dados de entrada para o código RELAP5. Além disso, antes de iniciar o uso dessas ferramentas computacionais, faz-se necessário que o usuário monte uma nodalização ou modelagem do problema, de forma a representar mais adequadamente a planta e a fenomenologia envolvida durante um acidente ou transiente, sendo que ambas sejam adequadamente atendidas pela ferramenta. O objetivo desse trabalho foi o de criar um pré-processador capaz de auxiliar o usuário na tarefa de preparar os dados de entrada para o código RELAP5 e, também, de auxiliá-lo na elaboração da nodalização necessária para representar de forma mais real possível a planta em estudo. O pré-processador desenvolvido nesse trabalho é gráfico, visual e amigável, de forma a permitir que o usuário inicie a nodalização com o uso desta ferramenta, integrando assim as etapas de modelagem e preparação dos dados de entrada para o código RELAP5 em uma única fase, reduzindo assim, os esforços necessários para a sua realização, otimizando o tempo gasto. Para atingir esse objetivo, foi utilizado como plataforma de desenvolvimento o MS Excel®, uma ferramenta de planilha de cálculo eletrônica largamente utilizada, e foi construído para ele um complemento por meio da linguagem C# e da plataforma .NET. E através desta linguagem, seus recursos de orientação a objetos e total integração com a ferramenta MS Excel®, como Interop e Visual Studio Tools for Office (VSTO) integrados, foi possível um desenvolvimento mais rápido de uma ferramenta eficiente para essa finalidade, fazendo uso de recursos que não estariam disponíveis por meio do VBA (Visual Basic for Applications). O pré-processador desenvolvido nesse trabalho permite a criação da nodalização de um problema termo-hidráulico, onde os componentes hidrodinâmicos são desenhados por meio da automação de AutoShapes do MS Excel® e os dados de entrada desses componentes são alimentados por meio de caixas de diálogo amigáveis e funcionais. Uma vez que o pré-processador foi criado como um complemento para MS Excel®, as linhas de programação do pré-processador criado não ficam restritas a uma única planilha, facilitando sua atualização e redistribuição. O resultado obtido por meio desse trabalho foi o FastLAP, um pré-processador para RELAP5 visual, robusto e amigável. Por meio do FastLAP, criado nesse trabalho, reduziu-se o esforço do usuário do código RELAP5 tanto no preparo da nodalização como no preparo dos dados de entrada para o código, uma vez que a ferramenta é amigável e exibe tanto os nomes das propriedades conforme definidos pelo código RELAP5, bem como os nomes das grandezas físicas reais que estão sendo representadas. O pré-processador foi testado na elaboração da nodalização e dos dados de entrada do RELAP5 para um problema experimental encontrado na literatura e mostrou-se uma poderosa ferramenta gráfica, ajudando os usuários do RELAP5 a organizar visualmente os dados de entrada e oferecendo condições para analisar os resultados mais rapidamente. Esse trabalho criou não somente uma nova ferramenta de apoio para o usuário RELAP5, mas sim uma nova abordagem para a simulação de acidentes termo-hidráulicos com o código, fundindo as duas etapas: de nodalização e preparação dos dados de entrada. / Clean energy has contributed to increased investment and research in nuclear power in the last decade. However, the occurrence of nuclear accidents throughout history still causes the population to feel unsafe. Regulatory agencies have increased the safety requirements in nuclear plants and due to this they have been making efforts to carry out numerical simulations with computing programs for the analysis of accidents in nuclear installations to assure the safety for the plant and the surrounding population, even before its construction. In Brazil, in order to meet the requirements of the Brazilian regulatory agency, the administrator of the national nuclear reactors must present a thermo-hydraulic study in the area of accident analysis and operational transients for nuclear installations. This is done in order to license nuclear plants, using appropriate computational tools, such as the RELAP5 code. This computing program is very efficient in simulation of accidents in nuclear power plants, but it is not very friendly on entering its input data. This issue has motivated the development of preprocessors to assist the preparation of geometric data from nuclear plants, which is part of the input data for the RELAP5 code. In addition, before starting to use these computing tools, the user needs to assemble a nodal or modeling of the problem to better represent the plant and the phenomenology involved during an accident or transient in order to allow both to be properly simulated by the tool. The aim of this work was to create a preprocessor capable of leveraging user on input data preparation for the RELAP5 code as well as assisting him in the creation of the nodalization diagram required to get the best representation as real as possible of the power plant being studied. The preprocessor developed in this work is graphical, visual and user-friendly in order to allow the user to begin the nodalization by using this tool, thus integrating the steps of modeling and preparing the input data for the RELAP5 code in a single phase, and also reducing the efforts needed to achieve it, reducing the time spent in this task. To achieve this goal, MS Excel® a widely used electronic spreadsheet tool was used as a development platform, and a MS-Excel® add-in was built with the C # language and the .NET platform. With the use of this programming language, its object-oriented features and full integration with the MS Excel® tool, thru Interop and Visual Studio Tools for Office (VSTO), it was possible to achieve a faster development of an efficient tool for this purpose, making use of features that would not be available through the Visual Basic for Application (VBA). The preprocessor developed in this work allows the building of the nodalization of a thermo-hydraulic problem, where the hydrodynamic components are designed through the automation of MS Excel® AutoShapes, and the input data of these components are inputted thru friendly and functional interfaces. Once the preprocessor was created as a MS Excel® add-in, the programming lines created are not restricted to a single worksheet, which makes it easier to be updated and redistributed. The result of this work is FastLAP, a RELAP5 Preprocessor, which reduces the user\'s effort in both preparing the nodalization and preparing the input data for RELAP5 code, once the tool is user-friendly and displays both the names of the properties as defined by the RELAP5 code and the names of the actual physical amounts being represented. The preprocessor was tested in the elaboration of the input data for RELAP5 regarding an experimental problem found in the literature and has proven to be a powerful graphical tool, helping RELAP5 users to visually organize the input data and giving conditions for a faster analysis of results. This work created not only a new aid tool for the RELAP5 users, but also a brand-new approach for the simulation of thermo-hydraulic accidents with the code, merging two phases: nodalization and preparation of the input data.
9

Análise do comportamento da contenção do reator Angra 2 durante um acidente de base de projeto / Analysis of the behavior of the Angra 2 reactor containment during a design basis accident

Silva, Dayane Faria 05 May 2017 (has links)
Este trabalho visa verificar a integridade da contenção do reator de Angra 2, com uma abordagem mais realista, da possibilidade de conter todos os radionuclídeos gerados durante Acidentes de Perda de Refrigerante Primário por Grande Ruptura (Large Break Loss of Coolant Accident - LBLOCA). Além disso, essas informações são utilizadas para o cálculo mais realista do Pico de Temperatura do Encamisamento (PTE) da vareta mais realista do núcleo deste reator durante esse acidente. Os resultados desse estudo possibilitarão verificar a integridade da Planta após a ocorrência de acidentes considerados base de projeto. Alguns dos programas utilizados para analisar a contenção de uma usina nuclear são o RELAP5 e o COCOSYS. Esses códigos computacionais são ferramentas de análise que preveem as condições termohidráulicas dentro de um prédio de contenção de um reator refrigerado à água leve. A contenção da planta tipo Pressurized Water Reactor (PWR) é um edifício de concreto revestido internamente por metal e tem limites de pressão que devem ser respeitados durante a ocorrência de um acidente. Os dados de entradas necessários para esta simulação são: adição de massa e energia geradas do estudo de um acidente do tipo LBLOCA com o código RELAP5 da planta em questão. Os resultados da análise do comportamento da contenção da planta nuclear Angra 2 durante os acidentes base de projetos estudados rupturas do tipo guilhotina do circuito primário nas pernas fria e quente foram satisfatórios quando comparados com os apresentados no Relatório de Análise de Segurança (RFAS/A2) da planta e as distribuições de pressão ficaram bem abaixo do valor de pressão de projeto da contenção (6,3bar). / This work aims to verify the integrity of Angra 2 reactor containment by using a more realistic approach for the possibility of containing all radionuclides generated during a Large Break Loss of Coolant Accident (LBLOCA). In addition, this information is used for a more realistic calculation of the Peak Cladding Temperature (PCT) of the hottest area in the reactor during this accident. This study will contribute to the safety of the population from the surrounding areas after the occurrence of a design basis accident. Some of the programs used to analyze the containment of a nuclear plant are RELAP5 and COCOSYS. These computers codes are tools for analysis used for predicting the physical conditions and distributions of radionuclides inside a containment building following the release of material from the primary system in a light-water reactor accident. The containment of the type PWR plant is a concrete building coated internally with metal and has pressure limits to be respected during the occurrence of an accident. The simulation should be performed to ensure that the radionuclides originating from accidents in the plant are not released into the environment. The input data required for this simulation are: mass addition and energy generated from the simulation of an accident of the type Loss of Coolant Accident (LOCA) using RELAP5 code. The results of the analysis of the containment behavior of the Angra 2 nuclear plant during the design basis accidents studied - guillotine-type ruptures of the primary circuit in the cold and hot legs - were satisfactory when compared to those presented in the Final Safety Analysis Report (FSAR) of the plant; moreover, the pressure distributions were below the contention design pressure value (6.3bar).
10

Análise do comportamento da contenção do reator Angra 2 durante um acidente de base de projeto / Analysis of the behavior of the Angra 2 reactor containment during a design basis accident

Dayane Faria Silva 05 May 2017 (has links)
Este trabalho visa verificar a integridade da contenção do reator de Angra 2, com uma abordagem mais realista, da possibilidade de conter todos os radionuclídeos gerados durante Acidentes de Perda de Refrigerante Primário por Grande Ruptura (Large Break Loss of Coolant Accident - LBLOCA). Além disso, essas informações são utilizadas para o cálculo mais realista do Pico de Temperatura do Encamisamento (PTE) da vareta mais realista do núcleo deste reator durante esse acidente. Os resultados desse estudo possibilitarão verificar a integridade da Planta após a ocorrência de acidentes considerados base de projeto. Alguns dos programas utilizados para analisar a contenção de uma usina nuclear são o RELAP5 e o COCOSYS. Esses códigos computacionais são ferramentas de análise que preveem as condições termohidráulicas dentro de um prédio de contenção de um reator refrigerado à água leve. A contenção da planta tipo Pressurized Water Reactor (PWR) é um edifício de concreto revestido internamente por metal e tem limites de pressão que devem ser respeitados durante a ocorrência de um acidente. Os dados de entradas necessários para esta simulação são: adição de massa e energia geradas do estudo de um acidente do tipo LBLOCA com o código RELAP5 da planta em questão. Os resultados da análise do comportamento da contenção da planta nuclear Angra 2 durante os acidentes base de projetos estudados rupturas do tipo guilhotina do circuito primário nas pernas fria e quente foram satisfatórios quando comparados com os apresentados no Relatório de Análise de Segurança (RFAS/A2) da planta e as distribuições de pressão ficaram bem abaixo do valor de pressão de projeto da contenção (6,3bar). / This work aims to verify the integrity of Angra 2 reactor containment by using a more realistic approach for the possibility of containing all radionuclides generated during a Large Break Loss of Coolant Accident (LBLOCA). In addition, this information is used for a more realistic calculation of the Peak Cladding Temperature (PCT) of the hottest area in the reactor during this accident. This study will contribute to the safety of the population from the surrounding areas after the occurrence of a design basis accident. Some of the programs used to analyze the containment of a nuclear plant are RELAP5 and COCOSYS. These computers codes are tools for analysis used for predicting the physical conditions and distributions of radionuclides inside a containment building following the release of material from the primary system in a light-water reactor accident. The containment of the type PWR plant is a concrete building coated internally with metal and has pressure limits to be respected during the occurrence of an accident. The simulation should be performed to ensure that the radionuclides originating from accidents in the plant are not released into the environment. The input data required for this simulation are: mass addition and energy generated from the simulation of an accident of the type Loss of Coolant Accident (LOCA) using RELAP5 code. The results of the analysis of the containment behavior of the Angra 2 nuclear plant during the design basis accidents studied - guillotine-type ruptures of the primary circuit in the cold and hot legs - were satisfactory when compared to those presented in the Final Safety Analysis Report (FSAR) of the plant; moreover, the pressure distributions were below the contention design pressure value (6.3bar).

Page generated in 0.0227 seconds