Spelling suggestions: "subject:"low regime"" "subject:"flow regime""
1 |
Studies of nanoscale movements in fluids: oscillatory cantilevers and active micro-swimmersKara, Vural 10 March 2017 (has links)
As a result of recent advances in micro and nanotechnology, the tiny movements of nanoscale active and passive objects in fluids can be probed with ultrahigh sensitivity and time resolution. The overarching theme of this dissertation is to harness these movements in fluids in order to study fundamental fluid dynamics and develop novel biomedical devices. First, we use the oscillatory movements of nanocantilevers to investigate the scaling behavior of unsteady fluid flow. Here, our expansive experimental data and rigorous theoretical analysis suggest that a generalized scaling parameter combining the length and time scales of the flow governs the scaling. Second, we turn our attention to nanoscale movements of bacteria in a buffer. We develop a simple, robust and sensitive experimental method to detect and track the random movements of bacteria. Using this method, we show evidence that these random movements of bacteria correlate with their antibiotic susceptibility.
In the first part of this thesis, we explore, through experimental and theoretical work, the breakdown of the Navier-Stokes equations in oscillatory fluid flows. The Navier-Stokes equations of hydrodynamics are based on two crucial assumptions. First, the fluid is approximated as a continuum, with a well-defined ``fluid particle." Second, the stress in the fluid is assumed to be a linear function of the rate-of-strain, resulting in a so-called Newtonian fluid. If a fluid such as an ideal gas is gradually rarefied, the Navier-Stokes equations begin to fail and a kinetic description of the flow becomes appropriate. The failure of the Navier-Stokes equations can be thought to take place via two different physical mechanisms: either the continuum hypothesis breaks down as a result of a finite size effect; or the local equilibrium is violated due to the high rate of strain. Our experimental approach is to create an unsteady flow by oscillating a finite-sized body in a gas and to measure the dissipation (or the drag force) acting on the body. By using micro and nanofabrication techniques, we independently tune the relevant linear dimensions and the frequencies of the oscillating bodies. We then measure the pressure-dependent dissipation of these micro/nano oscillators in three different gases, Helium, Nitrogen, and Argon. We observe that the scaling of the fluidic dissipation is governed by a subtle interplay between the length scale and the frequency, embodied respectively in the dimensionless Knudsen (Kn) and the Weissenberg ( Wi) numbers. We collapse all the experimental data using a single scaling parameter: Wi + Kn. This new dimensionless parameter, which can be regarded as a generalized Knudsen number, combines the relevant linear dimension and the frequency of the body; it is rooted in Galilean invariance and can be obtained rigorously from the Chapman-Enskog expansion of the Boltzmann equation.
In the second part of the thesis, we turn to the movements of active micro-swimmers in a buffer. This portion of the work is motivated by a serious global public health problem: the rise of multi-drug resistant bacteria. One way to prevent this threat from growing is to treat bacterial infections with effective antibiotics using the minimum dosage. However, currently-used antibiotic susceptibility tests (ASTs), which determine whether or not bacterial isolates from a patient are susceptible to administered antibiotics, take too long. Here, we aim to develop a robust and rapid AST by exploiting a recently-observed microbiological phenomenon: various nanomechanical movements of bacteria subside promptly (within minutes) when the bacteria are exposed to an effective antibiotic. Our approach is to transduce bacterial movements into electrical voltage fluctuations in a microchannel filled with a buffer solution. When a small but constant current is driven through the microchannel, bacterial movements are converted into strong voltage fluctuations due to the fact that they modulate the effective microchannel diameter. Our experiments with E. coli show that the proposed detection method can provide antibiotic susceptibility results in ~1 hour, making it a promising rapid AST. Because this approach is based on a simple electrical measurement and does not require delicate process steps and instrumentation, it may eventually be used at the point of care. / 2019-03-09T00:00:00Z
|
2 |
Zero gravity two-phase flow regime transition modeling compared with data and relap5-3d predictionsGhrist, Melissa Renee 15 May 2009 (has links)
This thesis compares air/water two-phase flow regime transition models in zero
gravity with data and makes recommendations for zero gravity models to incorporate
into the RELAP5-3D thermal hydraulic computer code. Data from numerous
researchers and experiments are compiled into a large database. A RELAP5-3D model
is built to replicate the zero gravity experiments, and flow regime results from the
RELAP5-3D code are compared with data. The comparison demonstrates that the
current flow regime maps used in the computer code do not scale to zero gravity. A new
flow regime map is needed for zero gravity conditions.
Three bubbly-to-slug transition models and four slug-to-annular transition
models are analyzed and compared with the data. A mathematical method is developed
using least squares to objectively compare the accuracy of the models with the data. The
models are graded by how well each represents the data. Agreement with data validates
the recommendations made for changes to the RELAP5-3D computer code models. For
smaller diameter tubes, Dukler’s bubbly-to-slug model best fits the data. For the larger tubes, the Drift Flux model is a better fit. The slug-to-annular transition is modeled best
by Creare for small tubes and Reinarts for larger tubes.
A major finding of this thesis work is that more air/water data is needed at
equally distributed flow velocities and a greater variety of tube diameters. More data is
specifically needed in the predicted transition regions made in this study.
|
3 |
Microgravity Flow Regime Transition ModelingShephard, Adam M. 2009 May 1900 (has links)
Flow regime transitions and the modeling thereof underlie the design of microgravity two-phase systems. Through the use of the zero-g laboratory, microgravity two-phase flows can be studied. Because microgravity two-phase flows exhibit essentially no accelerations (i.e. no buoyancy or gravitational forces), the effects of acceleration on two-phase flow can be decoupled from the effects of other fluid phenomenon. Two-phase systems on earth are understood mostly through empiricisms. Through microgravity two-phase research, a fundamental understanding of two-phase systems can be obtained and applied to both terrestrial systems in space applications.
Physically based bubbly-bubbly/slug and bubbly/slug-slug flow regime transition models are introduced in this study. The physical nature of the models demonstrates a new understanding of the governing relationships between coalescence, turbulence, void fraction, boundary layer affects, and the inlet bubble size distribution. Significantly, the new models are dimensionless in addition to being physically derived.
New and previous models are evaluated against zero-g data sets. Previous models are not accurate enough for design use. The new models proposed in this study are far more detailed than existing models and are within the precision necessary for most design purposes. Because of the limited data available, further experimental validation is necessary to formally vet the model.
Zero-g data set qualification and flight experiment design have not been standardized and as a result, much of the data in the literature can be shown not to represent microgravity conditions. In this study, a set of zero-g quality criteria are developed and used to qualify the data sets available in the literature. The zero-g quality criteria include limitations on buoyancy forces relative to surface tension and inertial forces as well as requirements on acceleration monitoring and flow development length and time. The resulting evaluation of the data sets available in the literature unveils several experiment design shortfalls, which have resulted in data sets being misrepresented as zero-g data sets. The quality standards developed in this study should continue to be improved upon and used in the design of future zero-g fluid experiments.
The use of one-g single-phase models in approximating zero-g two-phase experimental data was successfully performed in this study. Specifically the models for pressure drop, friction factor, wall shear, and velocity profile are demonstrated.
It is recognized that the mixing apparatus will affect the flow regime transitions, specifically the distribution of bubble sizes that exit the mixing apparatus. Unfortunately, little-to-no information regarding the mixing apparatus used in past experiments can be found in the literature. This will be an area for further developmental research.
In summary, the approach to understanding and modeling two-phase phenomenon demonstrated in this study provides tools to future researchers and engineers. Special attention to data qualification and experiment standardization provides a different prospective and interpretation of the currently available data. The physically based and dimensionless modeling demonstrated in this study can be extended to other studies in the field as well as providing a basis for the application of heat transfer modeling to microgravity two-phase systems, specifically boiling and condensation.
|
4 |
The distribution of dams in Costa Rica and their hydrologic impactsLaurencio, Laura Richards 12 April 2006 (has links)
Dam construction has increased exponentially over the past century, primarily in
temperate environments. While the impacts of dams in temperate regions have been
well-documented, a parallel level of research on dam impacts has not been achieved in
tropical environments. The overall objective of this research was to understand the
hydrologic impacts of dams in Costa Rica, a representative case study in a tropical
environment. To achieve this objective, the following specific objectives were
developed: 1) examine the spatial and temporal trend of large dam development within
the country; 2) assess large-scale hydrologic impacts (at the national scale); 3) analyze
downstream flow of individual dams to determine regional impacts.
Analysis of the spatial trend of dam development utilized a geographic
information system. The spatial distribution showed no apparent relation to hydroclimate,
and additional land-use analysis indicated that basins containing large dams are
primarily covered by either forest or crop.
Assessment of large-scale impacts used potential reservoir storage to represent
the hydrologic impact. Results indicate that large dams in Costa Rica are having a relatively low impact on the surface water component of the hydrologic cycle compared
to temperate regions. However, this analysis revealed that two dams, Arenal and
Sandillal, are having a disproportionately significant impact on their individual basins.
Analysis of flow regime for individual dams followed standard hydrologic
analyses of comparing pre- and post-dam discharge data. Variables analyzed included
mean, minimum, and peak flows. Results of these analyses revealed that the Arenal-
Corobic-Sandillal dam project have resulted in severe disruption to downstream
hydrology for all three dams. In contrast, downstream of Ventanas Dam changes in
downstream discharge were smaller than those documented for dams in temperate
regions.
The results of this research indicate that dam impacts in the tropics may be very
different from those documented in temperate environments. Consequently, theories
developed for temperate areas regarding expected dam impacts may not apply to tropical
regions. This has important implications for hydrology, geomorphology and ecology.
This study should serve as a step toward development of a more generalized theory of
dam impacts in the tropics.
|
5 |
Two-Phase Flow Regime Transitions Under a D.C. Electric FieldBrunner, K.S. 07 1900 (has links)
The air-water flow reqime transitions in a horizontal pipe under the influence of a stronq electric field perpendicular to the interface are studied. The separated flow model to predict flow regime transitions has been developed. The present version of the model is a modification of Taitel and Dukler's separated flow model. This assumes that all flow reqimes are perturbations from stratified smooth flow. Expressions for the electrical force are derived and added to the conservation and constitutive equations to obtain new transition criteria. The theoretical results are compared with observations of air-water flow in a 1.27 cm. and 1.9 cm. internal diameter pipe. Good agreement was found when no electric field was applied, however, the experimentally observed effect of the electric field was not as pronounced as predicted by theory. Further experiments to refine the theoretical model are presented. / Thesis / Master of Engineering (ME)
|
6 |
Effects of pipe orientation on sand transportationOsho, Adeyemi Joseph January 2013 (has links)
Sand transport in hilly terrain geometry is different and complex to understand compared to horizontal pipeline, due to the influence of the geometry that greatly affect multiphase flow and sand behaviour at the dip. The overall aim of this research work is to use experimental method to investigate the effects of multiphase flow behaviour on sand transport in a dip configuration. Experimental work was carried out to understand the complex dynamic mechanisms that exist during sand multiphase flow using 2” inch dip test facility with different inclination angles of ±24° and ±12° configurations. In order determine the multiphase flow parameters and sand flow regimes, extensive data were collected and analysed from continuous local measurement of instantaneous liquid hold up and sand hold up using conductivity rings. Significant observations were made during this study from which several conclusions were made. In the air–water test, three slug behaviours were observed at the dip: complete stratified flow downhill with slug initiation at dip; stratified flow (with energetic ripple) downhill with slug initiation and slug growth upward dip; and aerated slug downhill and slug growth at the dip. These behaviours are different from published work on this subject with low angle of inclination. The data analysis revealed that the two types of slug initiation mechanisms (wave growth and wave coalescence) observed are geometry specifics. The slug translational velocities (at the dip and uphill section) were used as criterion to determine the flow condition for each slug initiation mechanism at the dip. Significant observations were made during this study from which several conclusions were made. In the air–water test, three slug behaviours were observed at the dip: complete stratified flow downhill with slug initiation at dip; stratified flow (with energetic ripple) downhill with slug initiation and slug growth upward dip; and aerated slug downhill and slug growth at the dip. These behaviours are different from published work on this subject with low angle of inclination. The data analysis revealed that the two types of slug initiation mechanisms (wave growth and wave coalescence) observed are geometry specifics. The slug translational velocities (at the dip and uphill section) were used as criterion to determine the flow condition for each slug initiation mechanism at the dip. Five sand-water flow regimes (full suspension, streak, saltation, sand dune, and sand bed) were established by physical observation and data analysis. It was also observed that sand streaks were denser towards the central line of pipe bottom in the downhill pipe than that in uphill pipe. At downhill pipe section, there were sand gathering toward the central line of the pipe bottom. The characteristics of sand transportation at the dip section were found slightly different from downhill and uphill pipe for higher sand concentrations. When dense streak occurred at the downhill, the sand particles become dispersed at the dip. The minimum transport conditions (MTC) were determined at different sand concentration. The sand minimum transport condition in the dip section was found to be slightly lower than those in the downhill and uphill section. The minimum transport condition for a single phase water flow for the 24˚ dip. test section was slightly higher (with difference of about 0.1m/s) than that of the 12˚ at the downward and upward of the dip section at low sand concentration. In addition, local sand measurements using conductivity time series results at the downhill and uphill section showed the influence of sand concentration and flow condition on sand flow patterns. The air-water-sand results showed that sand deposits occurred in uphill section after sand transport at the downhill and dip sections. This was due to different flow regimes exhibited at the different pipe sections. The stratified (wavy) flow was the dominant flow in downhill pipe; therefore sand was observed transporting within the liquid film as thin streak for most of test conditions. The slug initiation at the dip section was observed to be a major factor that influences the sand behaviour. Sand particles in the slug unit (at the dip and uphill of the pipe) were observed to be entrained in the slug body once slug is initiated, thereby changing the force vector generating turbulence flow at the front of slug body. Once the sand particles entered the film zone of the slug unit, they immediately stopped moving forward due to the film velocity significantly lower than the slug body coupled with gravity effect. . Sand particles were found to be falling back while travelling with the water film at some conditions, until they were picked up by the next slug body. The results of this work provide a better understanding to the study of multiphase flow for pipeline design and most especially sand behaviour at the dip. The sand dune regime is identified distinctively using conductivity ring technique which would assist in determining the operating conditions that allow sand dune formation. The knowledge of flow condition at full suspension of sand is an important parameter to determine the erosion rate over the life span of the pipeline. Also, the quantity of sand bed and flow condition of sand settling at the dip is useful information for production chemist in order to determine the effectiveness of corrosion inhibitor at the bottom of the pipe. In conclusion, sand transport characteristics and MTC were strongly dependent on the gas-liquid flow regime and pipe geometry; and cannot be generalised on the superficial liquid and gas velocities of the transport fluid.
|
7 |
Effects of pipe orientation on sand transportationOsho, Adeyemi Joseph 11 1900 (has links)
Sand transport in hilly terrain geometry is different and complex to understand compared to horizontal pipeline, due to the influence of the geometry that greatly affect multiphase flow and sand behaviour at the dip. The overall aim of this research work is to use experimental method to investigate the effects of multiphase flow behaviour on sand transport in a dip configuration.
Experimental work was carried out to understand the complex dynamic mechanisms that exist during sand multiphase flow using 2” inch dip test facility with different inclination angles of ±24° and ±12° configurations. In order determine the multiphase flow parameters and sand flow regimes, extensive data were collected and analysed from continuous local measurement of instantaneous liquid hold up and sand hold up using conductivity rings.
Significant observations were made during this study from which several conclusions were made. In the air–water test, three slug behaviours were observed at the dip: complete stratified flow downhill with slug initiation at dip; stratified flow (with energetic ripple) downhill with slug initiation and slug growth upward dip; and aerated slug downhill and slug growth at the dip. These behaviours are different from published work on this subject with low angle of inclination. The data analysis revealed that the two types of slug initiation mechanisms (wave growth and wave coalescence) observed are geometry specifics. The slug translational velocities (at the dip and uphill section) were used as criterion to determine the flow condition for each slug initiation mechanism at the dip. Significant observations were made during this study from which several conclusions were made. In the air–water test, three slug behaviours were observed at the dip: complete stratified flow downhill with slug initiation at dip; stratified flow (with energetic ripple) downhill with slug initiation and slug growth upward dip; and aerated slug downhill and slug growth at the dip. These behaviours are different from published work on this subject with low angle of inclination. The data analysis revealed that the two types of slug initiation mechanisms (wave growth and wave coalescence) observed are geometry specifics. The slug translational velocities (at the dip and uphill section) were used as criterion to determine the flow condition for each slug initiation mechanism at the dip. Five sand-water flow regimes (full suspension, streak, saltation, sand dune, and sand bed) were established by physical observation and data analysis. It was also observed that sand streaks were denser towards the central line of pipe bottom in the downhill pipe than that in uphill pipe. At downhill pipe section, there were sand gathering toward the central line of the pipe bottom. The characteristics of sand transportation at the dip section were found slightly different from downhill and uphill pipe for higher sand concentrations. When dense streak occurred at the downhill, the sand particles become dispersed at the dip. The minimum transport conditions (MTC) were determined at different sand concentration. The sand minimum transport condition in the dip section was found to be slightly lower than those in the downhill and uphill section. The minimum transport condition for a single phase water flow for the 24˚ dip. test section was slightly higher (with difference of about 0.1m/s) than that of the 12˚ at the downward and upward of the dip section at low sand concentration. In addition, local sand measurements using conductivity time series results at the downhill and uphill section showed the influence of sand concentration and flow condition on sand flow patterns. The air-water-sand results showed that sand deposits occurred in uphill section after sand transport at the downhill and dip sections. This was due to different flow regimes exhibited at the different pipe sections. The stratified (wavy) flow was the dominant flow in downhill pipe; therefore sand was observed transporting within the liquid film as thin streak for most of test conditions. The slug initiation at the dip section was observed to be a major factor that influences the sand behaviour. Sand particles in the slug unit (at the dip and uphill of the pipe) were observed to be entrained in the slug body once slug is initiated, thereby changing the force vector generating turbulence flow at the front of slug body. Once the sand particles entered the film zone of the slug unit, they immediately stopped moving forward due to the film velocity significantly lower than the slug body coupled with gravity effect. . Sand particles were found to be falling back while travelling with the water film at some conditions, until they were picked up by the next slug body.
The results of this work provide a better understanding to the study of multiphase flow for pipeline design and most especially sand behaviour at the dip. The sand dune regime is identified distinctively using conductivity ring technique which would assist in determining the operating conditions that allow sand dune formation. The knowledge of flow condition at full suspension of sand is an important parameter to determine the erosion rate over the life span of the pipeline. Also, the quantity of sand bed and flow condition of sand settling at the dip is useful information for production chemist in order to determine the effectiveness of corrosion inhibitor at the bottom of the pipe.
In conclusion, sand transport characteristics and MTC were strongly dependent on the gas-liquid flow regime and pipe geometry; and cannot be generalised on the superficial liquid and gas velocities of the transport fluid.
|
8 |
PROBABILISTIC PREDICTION USING EMBEDDED RANDOM PROJECTIONS OF HIGH DIMENSIONAL DATAKurwitz, Richard C. 2009 May 1900 (has links)
The explosive growth of digital data collection and processing demands a new
approach to the historical engineering methods of data correlation and model creation. A
new prediction methodology based on high dimensional data has been developed. Since
most high dimensional data resides on a low dimensional manifold, the new prediction
methodology is one of dimensional reduction with embedding into a diffusion space that
allows optimal distribution along the manifold. The resulting data manifold space is then
used to produce a probability density function which uses spatial weighting to influence
predictions i.e. data nearer the query have greater importance than data further away.
The methodology also allows data of differing phenomenology e.g. color, shape,
temperature, etc to be handled by regression or clustering classification.
The new methodology is first developed, validated, then applied to common
engineering situations, such as critical heat flux prediction and shuttle pitch angle
determination. A number of illustrative examples are given with a significant focus
placed on the objective identification of two-phase flow regimes. It is shown that the
new methodology is robust through accurate predictions with even a small number of data points in the diffusion space as well as flexible in the ability to handle a wide range
of engineering problems.
|
9 |
Influences of river flows on recruitment success of Fynbos riparian vegetation along selected high gradient streams in the Western Cape, South AfricaMagoba, Rozwivhona Faith January 2014 (has links)
>Magister Scientiae - MSc / Riparian vegetation occurs in two distinct zones, the wet bank and the dry bank. Knowledge on how the flow regime influences the zonal structure of riparian vegetation is required to mitigate the adverse effects of water resource utilization on riparian vegetation. The first objective of this study was to determine whether flow exerts a physical influence on zonal structure pre- or post-recruitment. An examination of the survival of seedlings and saplings was conducted along Western Cape rivers to investigate seedling persistence and survival on lateral zones. A comparison of the ratios of seedlings, saplings and adults in different riparian zones for the years, 2004, 2011 and 2013, was carried out. The results suggest that in general seeds are deposited randomly on the banks, where they germinate and become seedlings. Seedlings that become established at locations unsuitable for their persistence into adulthood are removed either by high flows or perish during dry conditions. Thus, lateral zonation eventually develops due to species differences in tolerance to conditions at different positions on the banks. The second objective was to explore the effects of the reduction in dry season low flows on the recruitment success of riparian species at sites upstream and downstream of abstraction points. At most sites plants were arranged into different lateral zones and the numbers of species between upstream and downstream sites were not significantly different. There were significant differences in the abundances between up- and downstream sites, with the loss of herbaceous plants and sedges at downstream sites, both of which favour moist conditions. Also, in the absence of dry season flows, the seedlings of dry bank tree species recruited closer to the channel than those at the sites with summer flows. The shifting of the dry bank into the channel narrows the channel, which may affect the hydraulic pressures exerted during floods. The spatial arrangement in the riparian zone has as much to do with flow conditions post recruitment as it does with conditions during recruitment. This shows that the structure of riparian plants is determined not only by whether or not the minimum flows are met, this points to the need to reinstate the naturally variable flow and adopting a holistic approach for the understanding and management of aquatic systems.
|
10 |
Experimental investigation on the effects of channel material, size, and oil viscosity in horizontal mini-channelsBultongez, Kevin Kombo January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Melanie M. Derby / Oil-water separation is an important process in the petroleum industry. This research investigates the use of surface tension forces to improve current oil-water separation technologies. An understanding of oil-water flows in surface tension driven mini-channels is necessary. This work investigates the effects of mini-channel wall material and tube diameter, along with oil viscosity, on flow regimes and pressure drops in mini-channel oil-water flows. A horizontal closed-loop, adiabatic experimental apparatus was constructed and validated using single-phase water. 2.1-mm and 3.7-mm borosilicate glass, 3.7-mm stainless steel and 4.0-mm Inconel tubes, resulting in Eötvös numbers of 0.2, 0.6 and 0.7 were tested. The experimental data were analyzed and compared using two mineral oils (i.e., Parol 70 and 100) with densities of 840 kg/m³ for both and viscosities of 11.7 and 20.8 mPa-s, respectively. Experiments included a wide range of oil superficial velocities (e.g., 0.28-6.82 m/s for glass, 0.28-2.80 m/s for stainless steel and 0.21-2.89 for Inconel) and water superficial velocities (e.g., 0.07-6.77 for glass, 0.07-4.20 m/s for stainless steel and 0.06-3.86 m/s). Flow regimes were observed and classified as stratified, annular, intermittent, and dispersed flow regimes. Effects of tube diameter were observed. For example, the 2.1-mm glass tube had the smaller range of stratified flows and the larger range of annular and intermittent flows compared to the 3.7-mm glass tube. At the same oil and water superficial velocities and relatively the same flow regime, stainless steel and Inconel always displayed higher pressure drop than the glass tube. However, pressure drops were a strong function of flow regime; lowest pressure drops were found for annular flows and highest pressure drops for dispersed flows. Flow regime maps and pressure drop graphs were created. Overall effects of oil viscosity were modest; however, an increase in oil viscosity enhanced flow stability which affected flow regime transition points.
|
Page generated in 0.068 seconds