• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 9
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 58
  • 58
  • 14
  • 13
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Flödesvariatonens påverkan på artrikedomen inom strandvegetationen : - Hur påverkas artrikedomen längs tre sel i Juktån av ett reglerat flöde? / The flow variations impact on riparian species richness : - How is species richness, along three slow flowing parts in Juktån, impacted by a regulated flow?

Tjäder, Jessica January 2020 (has links)
In this study I investigate how the biodiversity of vascular plants differs between three slow flowing parts of the stream Juktån in northern Sweden where hydropower has impacted the flow regime and thus the conditions for riparian vegetation. The hypothesis was that species richness would increase with the distance from the hydropower plant due to increasing naturalness of the flow regime. Species richness was investigated since it is a fundamental and important function for the maintenance and quality of ecosystems (Naiman and Décamps 1997). Juktån, where data for the study was collected, receives a static minimum flow of barely 12 % of the yearly natural medium flow released from the hydropower station into the channel (Wisaeus 2014). The minimum flow follows the variation set by the hydropower which deviates from natural seasonal flow variation, which is essential for the germination, growth, and reproduction of many plant species (Poff et al. 1997). The investigation includes a comparison between species richness and richness of 4 functional groups among the three study locations. In addition, analysis of the relationship between environmental variables such as position on the riparian zone (height) and substrate composition were performed. Sikselet that was the slow flowing reach closest to the hydropower station had the highest species richness while Bredselet further downstream had the lowest species richness with Långselet having intermediate species richness. One reason for the pattern in species richness could be that seeds get trapped in weirs located between Sikselet and Långselet. In that case, reintroducing a natural flow regime may not suffice to increase species richness.
12

Prediction of the flow regime transitions in high pressure, large diameter, inclined multiphase pipelines

Wilkens, Robert Joseph January 1997 (has links)
No description available.
13

Flow Regime Identification using Machine Learning and Local Conductivity Measurements

Charie anatole Tsoukalas (17522943) 01 December 2023 (has links)
<p dir="ltr">The accurate identification of flow regimes in multiphase flow systems is of paramount importance in many engineering applications. This thesis explores the significance of flow regime identification using neural networks, specifically employing a self-organizing map (SOM) algorithm. The focus of this research is on the determination of bubble void fraction probability density function (PDF) using local conductivity probe measurements. The thesis begins by providing an overview of the importance of flow regime identification in understanding and predicting the behavior of multiphase flows. Various flow regimes such as bubbly flow, slug flow, annular flow, and others, are discussed highlighting their distinct characteristics and implications for system performance. The self-organizing map is introduced as a powerful neural network technique capable of identifying and classifying different flow regimes based on input parameters obtained from local conductivity probe measurements. The SOM algorithm is explained in detail, emphasizing its ability to learn and adapt to complex patterns in the data. To validate the effectiveness of the proposed approach, experimental measurements of local conductivity probe signals were conducted in a multiphase flow system. The obtained data was used to train and optimize a self-organizing map for flow regime identification. The bubble void fraction probability density function was calculated based on the local time-averaged void fraction measurements from the droplet-capable conductivity probe (DCCP-4). The analysis of the PDF provides valuable insights into the distribution and characteristics of bubbles within the multiphase flow system. These insights can enhance the understanding of bubble behavior, droplet behavior, interfacial phenomena and overall system performance. The thesis concludes with the classification results along with an error analysis conducted to highlight potential discrepancies in the tested results. Additionally, future research directions and potential improvements in the flow regime identification methodology are outlined.</p>
14

The prediction of flow through two-dimensional porous media

Terblanche, Luther 03 1900 (has links)
Thesis (MScEng (Mathematical Sciences. Applied Mathematics))--University of Stellenbosch, 2006. / When considering flow through porous media, different flow regimes may be identified. At very small Reynolds numbers the relation between the pressure gradient and the velocity of the fluid is linear. This flow regime ...
15

Gas-liquid two-phase flow in up and down vertical pipes

Almabrok, Almabrok Abushanaf January 2013 (has links)
Multiphase flows occurring in pipelines with a serpentine configuration is an important phenomenon, which can be encountered in heat exchangers used in a variety of industrial processes. More specifically, in many industrial units such as a large cracking furnace in a refinery, the tubes are arranged in a serpentine manner and are relatively short. As flow negotiates round the 180o bend at the ends of the tubes, the generated centrifugal force could cause flow maldistribution creating local dry spots, where no steady liquid film is formed on the adjacent straight sections of the pipe. As a result, events including coking, cracking and overheating of heat transfer surfaces may occur and lead to frequent shutdown of the facilities. Consequently, this could increase operating costs and reduce production revenue. Thus, it is desirable to know the effect that the bends exert on the flow in the straight part of the pipe. Apart from this, knowledge of the bend effects on the flows in the pipeline could also be important for the design of other pipelines for gas/liquid transport, e.g. offshore gas and oil pipelines. Quite a large number of studies have been found in the literature. The majority of them were for two-phase flow with small diameter pipes (i.d. ≤ 50 mm). However, studies with large diameter pipes (i.d. ≥ 100 mm), have increasingly been considered in recent years as problems related to large diameter vertical pipes are being encountered more and more often in industrial situations. This thesis studies the effect of 180o bends on the characteristics and development of gas-liquid two-phase flows in large diameter downward and upward pipes. The study particularly focuses on the influence of serpentine configuration on flow structure, cross-sectional void distribution and circumferential liquid film profiles and their development along the downward and upward sections. It was found that both the top and bottom bends have considerable impacts on flow behaviour, although to varying degrees. These impacts were highly dependent on the air and water flow rates. For sufficient flow rates, the bends were observed to create flow maldistribution in the adjacent straight section, due to the effects of centrifugal force. The air moved towards the inner zone of the bend and the water towards the outer zone, while a lesser quantity of water was identified on the other surfaces of the pipe. Investigation of the film thickness development in the downward and upward sections showed that, the liquid film behaviour close to the bends was significantly different from those located further away. This can be attributed to the centrifugal force of the bends. Examination of the power spectral density (PSD) along the downward and upward sections showed that, the shape of PSD located in the adjacent section to the bends, was substantially different from those located further away. Furthermore, several flow regime maps were generated which showed that, in addition to bubbly, intermittent and annular flows, unstable flows existed along the upward section, particularly for low gas and water flow rates. In this study it was found that, the lower bend was periodically blocked by the liquid and then blown through by the accumulated air. The data obtained from this study were compared with different theoretical correlations found in the existing literature. Some discrepancy between the results of the current study and those of previous published materials was noted. Updated correlations were presented which provided well results when they applied for the data obtained from the current study and previous studies.
16

Environment shapes invertebrate assemblage structure differences between volcanic spring-fed and runoff rivers in northern California

Lusardi, Robert A., Bogan, Michael T., Moyle, Peter B., Dahlgren, Randy A. 09 1900 (has links)
Flow variability plays an important role in structuring lotic communities, yet comparatively little is known about processes governing assemblage dynamics in stream ecosystems with stable environmental conditions, such as spring-fed rivers. Volcanic spring-fed rivers (hereafter spring-fed rivers) occur in geologically active landscapes of the western USA and around the globe. We sampled invertebrate assemblages and quantified primary productivity and habitat characteristics of spring-fed and runoff rivers in northern California over 4 seasons. We predicted that abiotic factors would be more stable and nutrient availability greater and that invertebrate density would be greater and diversity lower in spring-fed than in runoff rivers. Runoff rivers exhibited high variability in discharge and temperature, whereas spring-fed rivers were relatively stable with high naturally occurring nutrient levels. On average, NO3- and PO43- concentrations were 40x greater in spring-fed than in runoff rivers. Spring-fed rivers supported nearly 7 to 16x greater densities of invertebrates than runoff systems, depending on season. However, invertebrate species richness was greater in runoff rivers in all seasons. Spring-fed river invertebrate assemblages were strongly correlated with elevated nutrient concentrations and basal C sources, whereas runoff assemblages were associated with discharge variability and median substrate size. We suggest that strong differences in abiotic variability between spring-fed and runoff rivers play an important role in determining invertebrate assemblage structure. Because spring-fed rivers exhibit more stable temperatures throughout the year and lower temperatures during the summer than runoff rivers, they may provide essential refugia for coldwater taxa in a warming climate.
17

Active control of hydrodynamic slug flow

Inyiama, Fidelis Chidozie 04 1900 (has links)
Multiphase flow is associated with concurrent flow of more than one phase (gas-liquid, liquid-solid, or gas-liquid-solid) in a conduit. The simultaneous flow of these phases in a flow line, may initiate a slug flow in the pipeline. Hydrodynamic slug flow is an alternate or irregular flow with surges of liquid slug and gas pocket. This occurs when the velocity difference between the gas flow rate and liquid flow rate is high enough resulting in an unstable hydrodynamic behaviour usually caused by the Kelvin-Helmholtz instability. Active feedback control technology, though found effective for the control of severe slugs, has not been studied for hydrodynamic slug mitigation in the literature. This work extends active feedback control application for mitigating hydrodynamic slug problem to enhance oil production and recovery. Active feedback Proportional-Integral (PI) control strategy based on measurement of pressure at the riser base as controlled variable with topside choking as manipulated variable was investigated through Olga simulation in this project. A control system that uses the topside choke valve to keep the pressure at the riser base at or below the average pressure in the riser slug cycle has been implemented. This has been found to prevent liquid accumulation or blockage of the flow line. OLGA (olga is a commercial software widely tested and used in oil and gas industries) has been used to assess the capability of active feedback control strategy for hydrodynamic slug control and has been found to give useful results and most interestingly the increase in oil production and recovery. The riser slugging was suppressed and the choke valve opening was improved from 5% to 12.65% using riser base pressure as controlled variable and topside choke valve as the manipulated variable for the manual choking when compared to the automatic choking in a stabilised operation, representing an improvement of 7.65% in the valve opening. Secondly, implementing active control at open-loop condition reduced the riser base pressure from 15.3881bara to 13.4016bara.
18

Gas-Liquid Two-Phase Flow in Up and Down Vertical Pipes

Almabrok, Almabrok Abushanaf 10 1900 (has links)
Multiphase flows occurring in pipelines with a serpentine configuration is an important phenomenon, which can be encountered in heat exchangers used in a variety of industrial processes. More specifically, in many industrial units such as a large cracking furnace in a refinery, the tubes are arranged in a serpentine manner and are relatively short. As flow negotiates round the 180o bend at the ends of the tubes, the generated centrifugal force could cause flow maldistribution creating local dry spots, where no steady liquid film is formed on the adjacent straight sections of the pipe. As a result, events including coking, cracking and overheating of heat transfer surfaces may occur and lead to frequent shutdown of the facilities. Consequently, this could increase operating costs and reduce production revenue. Thus, it is desirable to know the effect that the bends exert on the flow in the straight part of the pipe. Apart from this, knowledge of the bend effects on the flows in the pipeline could also be important for the design of other pipelines for gas/liquid transport, e.g. offshore gas and oil pipelines. Quite a large number of studies have been found in the literature. The majority of them were for two-phase flow with small diameter pipes (i.d. ≤ 50 mm). However, studies with large diameter pipes (i.d. ≥ 100 mm), have increasingly been considered in recent years as problems related to large diameter vertical pipes are being encountered more and more often in industrial situations. This thesis studies the effect of 180o bends on the characteristics and development of gas-liquid two-phase flows in large diameter downward and upward pipes. The study particularly focuses on the influence of serpentine configuration on flow structure, cross-sectional void distribution and circumferential liquid film profiles and their development along the downward and upward sections. It was found that both the top and bottom bends have considerable impacts on flow behaviour, although to varying degrees. These impacts were highly dependent on the air and water flow rates. For sufficient flow rates, the bends were observed to create flow maldistribution in the adjacent straight section, due to the effects of centrifugal force. The air moved towards the inner zone of the bend and the water towards the outer zone, while a lesser quantity of water was identified on the other surfaces of the pipe. Investigation of the film thickness development in the downward and upward sections showed that, the liquid film behaviour close to the bends was significantly different from those located further away. This can be attributed to the centrifugal force of the bends. Examination of the power spectral density (PSD) along the downward and upward sections showed that, the shape of PSD located in the adjacent section to the bends, was substantially different from those located further away. Furthermore, several flow regime maps were generated which showed that, in addition to bubbly, intermittent and annular flows, unstable flows existed along the upward section, particularly for low gas and water flow rates. In this study it was found that, the lower bend was periodically blocked by the liquid and then blown through by the accumulated air. The data obtained from this study were compared with different theoretical correlations found in the existing literature. Some discrepancy between the results of the current study and those of previous published materials was noted. Updated correlations were presented which provided well results when they applied for the data obtained from the current study and previous studies.
19

Ecological, Environmental and Hydrological Integrity in Sustainable Water Resource Management for River Basins

January 2015 (has links)
abstract: This dissertation presents a new methodology for the sustainable and optimal allocation of water for a river basin management area that maximizes sustainable net economic benefit over the long-term planning horizon. The model distinguishes between short and long-term planning horizons and goals using a short-term modeling component (STM) and a long term modeling component (LTM) respectively. An STM optimizes a monthly allocation schedule on an annual basis in terms of maximum net economic benefit. A cost of depletion based upon Hotelling’s exhaustible resource theory is included in the STM net benefit calculation to address the non-use value of groundwater. An LTM consists of an STM for every year of the long-term planning horizon. Net economic benefits for both use and non-use values are generated by the series of STMs. In addition output from the STMs is measured in terms of sustainability which is quantified using a sustainability index (SI) with two groups of performance criteria. The first group measures risk to supply and is based on demand-supply deficits. The second group measures deviations from a target flow regime and uses a modified Hydrologic Alteration (HA) factor in the Range of Variability Approach (RVA). The STM is a linear programming (LP) model formulated in the General Algebraic Modeling System (GAMS) and the LTM is a nonlinear programming problem (NLP) solved using a genetic algorithm. The model is applied to the Prescott Active Management Area in north-central Arizona. Results suggest that the maximum sustainable net benefit is realized with a residential population and consumption rate increase in some areas, and a reduction in others. / Dissertation/Thesis / PHP files / Doctoral Dissertation Civil and Environmental Engineering 2015
20

Development of an improved design correlation for local heat transfer coefficients at the inlet regions of annular flow passages

Kohlmeyer, Berno Werner January 2017 (has links)
Several applications, including those in the energy sector that require high thermal efficiency, such as those in the solar energy industry, require a careful thermal analysis of heat exchange components. In this regard, thermal resistance is a major cause of exergy destruction and must be minimised as much as possible, but also adequately designed. In the past, a number of correlations have been developed to predict heat transfer coefficients in compact heat exchangers. The designers of such heat exchangers often exploit the development of thermal boundary layers to achieve higher overall efficiency due to increases in local heat transfer coefficients. However, most of the correlations that have been developed for heat exchangers neglect the specific effect of the thermal boundary layer development in the inlet region, and instead only offer effective average heat transfer coefficients, which most users assume to be constant throughout the heat exchanger. This is often an over-simplification and leads to over-designed heat exchangers. In this study, focus is placed on annular flow passages with uniform heating on the inner wall. This geometry has many applications. This study aims to collect experimental heat transfer data for water at various flow rates and inlet geometries, to process the data and determine local and overall heat transfer coefficients, and to develop an improved local heat transfer coefficient correlation. Experimental tests were performed on a horizontal concentric tube-in-tube heat exchanger with a length of 1.05 m and a diameter ratio of 0.648. The surface of the inner tube was treated with thermochromic liquid crystals (TLCs), which allowed for high-resolution temperature mapping of the heated surface when combined with an automated camera position system in order to determine local heat transfer coefficients. Conventional in-line and out-of-line annular inlet configurations were evaluated for Reynolds numbers from 2 000 to 7 500, as well as the transition from laminar to turbulent flow for a single in-line inlet configuration. It was found that the local heat transfer coefficients were significantly higher at the inlets, and decreased as the boundary layers developed. With the high resolution of the results, the local heat transfer coefficients were investigated in detail. Local maximum and minimum heat transfer coefficients were identified where the thermal boundary layers merged for high turbulent flow cases. The annular inlet geometries only influenced the heat transfer for Reynolds numbers larger than 4 000, for which larger inlets are favoured. Out-of-line inlet geometries are not favoured for heat transfer. A new heat transfer correlation was developed from the experimental data, based on an existing heat transfer correlation for turbulent flow in an annular flow passage, considering the boundary layer development. The new correlation estimated the area-weighted heat transfer coefficients within 10% of the experimental data and closely followed trends for local heat transfer coefficients. / Dissertation (MEng)--University of Pretoria, 2017. / Mechanical and Aeronautical Engineering / MEng / Unrestricted

Page generated in 0.07 seconds