101 |
Investigating the Performance Of Electrical Resistivity ArraysPerren, Lee John 11 October 2005 (has links)
2D inversion modeling of synthetic data is used to evaluate the performance of five electrical resistivity arrays, with the primary criteria being the reproduction of sharp model boundaries. 2D synthetic noise free data were calculated simulating a modern fixed spacing multi-electrode cable. Twelve 2D synthetic models, resembling a number of different geologic situations, were used to investigate performance of the dipole-dipole, pole-dipole, pole-pole, Wenner and Schlumberger arrays
Although the synthetic, noise-free data were well matched for all inversions, many of the inversion results exhibit substantial mismatches from the true model. The greatest resistivity mismatches are near model discontinuities. Resistivity mismatches become worse with depth and the geometry of geologic boundaries in the deep portion of the models are not well reproduced by any of the arrays. Field surveys must be designed so that the geologic target is in the middle of the data constrained region. Different arrays performed best for different models and a practical table is presented allowing the practitioner to choose the optimal array for the particular geologic situation under investigation. Although the dipole-dipole and pole-dipole arrays may not be the optimal array for a given geology, they rarely fail for any model, and thus are recommended for reconnaissance or preliminary investigations in regions of unknown geology.
Contrary to traditional advice found in textbooks, based on 1D profiling and sounding, and data plot comparison, this study, using 2D data and 2D inversion, finds the Wenner and Schlumberger arrays, thought to perform poorly for vertical boundaries, performed well for a vertical boundary and a thin vertical resistor. Similarly, the dipole-dipole and pole-dipole arrays, thought to perform poorly for horizontal and dipping boundaries, performed well for several models containing those geometries. Another interesting finding is that changing the polarity of geologic units from resistors to conductors changed relative array performance in most models. / Master of Science
|
102 |
Examining Pathways for Water Loss from Mountain Lake, Giles County, VirginiaJoyce, William Lucas 13 July 2012 (has links)
Located in Giles County, Virginia, Mountain Lake has a documented history of dramatic water level fluctuations. Previous water balance studies have documented that the main cause of water loss is outflow to groundwater. However, the flow paths of water exiting the lake are unknown. This study applied hydrologic, geophysical, and dye tracer methods to examine the pathways for water loss and the possible geologic controls on these flow paths.
Continuous lake level monitoring data show seasonal trends of draining and filling over a three year period. Electrical resistivity profiles suggest the presence of a large low-resistivity zone beneath the northern end of the lake. A dye tracer study yielded limited positive results, but dye detection in one stream and within the lake suggest complex flow dynamics. The most likely reasons for the lack of dye recovery include dilution of the dye during lake recovery, seepage of water below monitoring site locations, or formation of a temporary seal in the depressions created by influx of sediment during periods of lake bed exposure. / Master of Science
|
103 |
Influence of Bridge Deck Concrete Parameters on the Reinforcing Steel CorrosionBalakumaran, Soundar Sriram G. 25 May 2010 (has links)
Chloride induced corrosion of steel in concrete is one of the major forms of deterioration mechanisms found in reinforced concrete bridges. Early age corrosion damage reduces the lifespan of the bridges, which results in heavy economic losses. Research has been conducted to identify economic solutions for significantly delaying and/or preventing corrosion damage. Considering the amount of steel reinforcement used in bridge decks, the influence of as constructed parameters including clear spacing between top and bottom reinforcement bars, ratio of cathode to anode areas, and presence of stay-in-place forms on corrosion activity needs to be evaluated.
The influence of the as constructed parameters have been studied using different corrosion assessment methods including resistivity, half-cell potential, linear polarization, chloride content, moisture content, and visual inspection. This study included the clear spacing distances between the anode and cathode of 51, 76, and 102 mm (2, 3, and 4-inch), number of cathodes as 1 and 2, and the presence and absence of stay-in-place forms. Data up to 15 months were taken from a previous study by Smolinski and integrated into the current study period of 35 to 45 months. A trend line may be established to illustrate the changes which took place over the missing time period, from approximately 15 to 35 months, since the specimens were maintained in controlled environment.
Analysis of the data showed that there is a significant difference between the spacing values (2, 3, and 4-inch) through all forms of evaluations. Regarding the other parameters, no significant difference was identified. Variations in resistivity with increasing spacing, even when the water-cement ratio was kept at 0.50, maybe the result of the difference in unit consolidation between the clear spacing specimens. Thus, the corrosion mechanism observed in this study may be resistivity-controlled. Also, autopsy showed that corrosion on the top bars was in general agreement with the measured corrosion activity. The bottom bars had no visible corrosion and the chloride had not penetrated to the bottom bars, regardless of the separation distance between the top and bottom bars. For this laboratory study, the measurements showed that macrocell corrosion influence on the total corrosion was insignificant. / Master of Science
|
104 |
Evaluation of Fracture Flow at the Coles Hill Uranium Deposit in Pittsylvania County, VA using Electrical Resistivity, Bore Hole Logging, Pumping Tests, and Age Dating MethodsGannon, John P. 28 December 2009 (has links)
The Coles Hill uranium deposit in Pittsylvania County, VA, is the largest un-mined uranium deposit in the United States. The deposit is located in the Virginia Piedmont in a geologic unit located immediately west of the Chatham Fault, which separates the granitic rocks of the Virginia Piedmont to the west from the metasediments of the Danville Triassic basin to the east. Groundwater at the site flows through a complex interconnected network of fractures controlled by the geology and structural history of the site. In this study groundwater is characterized in a small study area just south of the main deposit. Methods used in this investigation include electrical resistivity profiling, bore hole logging, a pumping test, and age dating and water chemistry. In this thesis groundwater flow is confirmed to occur from the Piedmont crystalline rocks across the Chatham Fault and into the Triassic basin at the study area as evidenced by pumping test data and static water-level data from observation wells. Well logs have identified fractures capable of transmitting water in the granitic rocks of the Piedmont, the Triassic basin metasediments and the Chatham Fault but the largest quantities of flow appear to occur in the Triassic basin. A definable recharge area for the groundwater present at Coles Hill can not yet be determined due to the complexity of the fracture system, but age dating confirms that groundwater is composed of both young and old (>60 years) components, indicating that at least a portion of groundwater at Coles Hill originates from a more distant area. / Master of Science
|
105 |
Development of Test Methods for Assessment of Concrete Durability for Use in Performance-based SpecificationsShahroodi, Ahmad 11 January 2011 (has links)
Many Ministry of Transportation of Ontario (MTO) projects consist of construction and maintenance of reinforced concrete structures. Where appropriate test methods exist, MTO has been moving towards use of performance-based specifications for durability control of concrete. MTO currently uses ASTM C1202 (RCPT) coulomb values to assess concrete durability. This test requires taking cores, so replacing this test with a faster non-destructive technique is important.
The main focus of this program was to study the Wenner probe surface resistivity as a non-destructive test device and evaluate the potential for replacement of RCPT with the Wenner resistivity.
This research program consists of the determination of RCPT values, water sorptivity coefficients and electrical resistivities (bulk and surface) of nine concrete mixtures.
In addition, the development of the Wenner probe instrument was studied. As well, correlations between resistivity and ASTM C1202 and C1585 are provided followed by technical recommendations for improving the Wenner test.
|
106 |
Development of Test Methods for Assessment of Concrete Durability for Use in Performance-based SpecificationsShahroodi, Ahmad 11 January 2011 (has links)
Many Ministry of Transportation of Ontario (MTO) projects consist of construction and maintenance of reinforced concrete structures. Where appropriate test methods exist, MTO has been moving towards use of performance-based specifications for durability control of concrete. MTO currently uses ASTM C1202 (RCPT) coulomb values to assess concrete durability. This test requires taking cores, so replacing this test with a faster non-destructive technique is important.
The main focus of this program was to study the Wenner probe surface resistivity as a non-destructive test device and evaluate the potential for replacement of RCPT with the Wenner resistivity.
This research program consists of the determination of RCPT values, water sorptivity coefficients and electrical resistivities (bulk and surface) of nine concrete mixtures.
In addition, the development of the Wenner probe instrument was studied. As well, correlations between resistivity and ASTM C1202 and C1585 are provided followed by technical recommendations for improving the Wenner test.
|
107 |
Bedrock Anisotropy at Sycamore Farms: An Investigation Using Azimuthal Resistivity and Electromagnetic InductionKessler, Cody M. 12 May 2022 (has links)
No description available.
|
108 |
Les méthodes géophysiques pour la caractérisation des couvertures d’installation de stockage de déchets / Geophysical methods for landfill cover characterisationGenelle, Fanny 25 May 2012 (has links)
Parmi l’ensemble des matériaux constitutifs d’une couverture d’installation de stockage de déchets, l’argile et le GéoSynthétique Bentonitique (GSB), couramment utilisés, peuvent présenter des défauts qu’il est nécessaire de caractériser afin de prévoir les éventuels travaux de remise en état partielle ou totale du site. L’objectif de cette thèse est de déterminer la capacité des méthodes géophysiques de Tomographie de Résistivité Electrique (TRE), de Polarisation Spontanée (PS) et d’Automatic Resistivity Profiling (ARP) à caractériser les couvertures. Pour cela, un site expérimental constitué de deux couvertures, au sein desquelles des défauts ont été volontairement créés, a été mis en place. Le suivi temporel effectué sur la couverture sans GSB a montré que les conditions météorologiques du mois précédant les mesures ont une incidence sur la détection des défauts. De plus, les variations de comportement hydrique et électrique détectées en TRE au sein du matériau de couverture ont notamment pu être attribuées à l’existence d’hétérogénéités de composition. La présence de GSB rend plus difficile la détection des défauts quelle que soit la méthode utilisée. Cependant, il semble que le temps passant l’évolution du GSB permette une détection plus aisée. Enfin, les prospections effectuées sur une installation de stockage de déchets dangereux ont mis en évidence la nécessité de coupler plusieurs méthodes géophysiques. L’hétérogénéité des matériaux de couverture et de l’état du GSB, mise en évidence par la TRE, a été confirmée par des observations in situ sur des sondages à la tarière manuelle. / Among the whole landfill cover materials, clay and Geosynthetic Clay Liner (GCL), commonly used, may contain defects which are necessary to characterize in order to plan possible repair work, partial or total. The aim of this thesis is to define the ability of the following geophysical methods, the Electrical Resistivity Tomography (ERT), the Self Potential (SP) and the Automatic Resistivity Profiling (ARP) to characterize covers. To do this, an experimental site composed of two covers in which defects have been intentionally made has been built. These covers are composed of a clayey material upon which a GCL has been placed for one of these covers. The monitoring performed on the cover without the GCL has outlined that the climatic conditions of the month preceding measurements have an impact on the defects’ detection. Moreover, hydric and electrical behavior variations detected by ERT in the clayey material have in particular be linked with the presence of composition heterogeneities. The presence of the GCL makes more difficult the detection of defects whatever the method used. However, it seems that, over time, the evolution of the GCL enables an easier detection. Finally, surveys carried out on an industrial waste landfill have shown the necessity of coupling geophysical methods. The heterogeneity of the cover materials and the GCL has been checked by manual auger holes.
|
109 |
Experimental studies on displacements of CO₂ in sandstone core samplesAl-Zaidi, Ebraheam Saheb Azeaz January 2018 (has links)
CO2 sequestration is a promising strategy to reduce the emissions of CO2 concentration in the atmosphere, to enhance hydrocarbon production, and/or to extract geothermal heat. The target formations can be deep saline aquifers, abandoned or depleted hydrocarbon reservoirs, and/or coal bed seams or even deep oceanic waters. Thus, the potential formations for CO2 sequestration and EOR (enhanced oil recovery) projects can vary broadly in pressure and temperature conditions from deep and cold where CO2 can exist in a liquid state to shallow and warm where CO2 can exist in a gaseous state, and to deep and hot where CO2 can exist in a supercritical state. The injection, transport and displacement of CO2 in these formations involves the flow of CO2 in subsurface rocks which already contain water and/or oil, i.e. multiphase flow occurs. Deepening our understanding about multiphase flow characteristics will help us building models that can predict multiphase flow behaviour, designing sequestration and EOR programmes, and selecting appropriate formations for CO2 sequestration more accurately. However, multiphase flow in porous media is a complex process and mainly governed by the interfacial interactions between the injected CO2, formation water, and formation rock in host formation (e.g. interfacial tension, wettability, capillarity, and mass transfer across the interface), and by the capillary , viscous, buoyant, gravity, diffusive, and inertial forces; some of these forces can be neglected based on the rock-fluid properties and the configuration of the model investigated. The most influential forces are the capillary ones as they are responsible for the entrapment of about 70% of the total oil in place, which is left behind primary and secondary production processes. During CO2 injection in subsurface formations, at early stages, most of the injected CO2 (as a non-wetting phase) will displace the formation water/oil (as a wetting phase) in a drainage immiscible displacement. Later, the formation water/oil will push back the injected CO2 in an imbibition displacement. Generally, the main concern for most of the CO2 sequestration projects is the storage capacity and the security of the target formations, which directly influenced by the dynamic of CO2 flow within these formations. Any change in the state of the injected CO2 as well as the subsurface conditions (e.g. pressure, temperature, injection rate and its duration), properties of the injected and present fluids (e.g. brine composition and concentration, and viscosity and density), and properties of the rock formation (e.g. mineral composition, pore size distribution, porosity, permeability, and wettability) will have a direct impact on the interfacial interactions, capillary forces and viscous forces, which, in turn, will have a direct influence on the injection, displacement, migration, storage capacity and integrity of CO2. Nevertheless, despite their high importance, investigations have widely overlooked the impact of CO2 the phase as well as the operational conditions on multiphase characteristics during CO2 geo-sequestration and CO2 enhanced oil recovery processes. In this PhD project, unsteady-state drainage and imbibition investigations have been performed under a gaseous, liquid, or supercritical CO2 condition to evaluate the significance of the effects that a number of important parameters (namely CO2 phase, fluid pressure, temperature, salinity, and CO2 injection rate) can have on the multiphase flow characteristics (such as differential pressure profile, production profile, displacement efficiency, and endpoint CO2 effective (relative) permeability). The study sheds more light on the impact of capillary and viscous forces on multiphase flow characteristics and shows the conditions when capillary or viscous forces dominate the flow. Up to date, there has been no such experimental data presented in the literature on the potential effects of these parameters on the multiphase flow characteristics when CO2 is injected into a gaseous, liquid, or supercritical state. The first main part of this research deals with gaseous, liquid, and supercritical CO2- water/brine drainage displacements. These displacements have been conducted by injecting CO2 into a water or brine-saturated sandstone core sample under either a gaseous, liquid or supercritical state. The results reveal a moderate to considerable impact of the fluid pressure, temperature, salinity and injection rate on the differential pressure profile, production profile, displacement efficiency, and endpoint CO2 effective (relative) permeability). The results show that the extent and the trend of the impact depend significantly on the state of the injected CO2. For gaseous CO2-water drainage displacements, the results showed that the extent of the impact of the experimental temperature and CO2 injection rate on multiphase flow characteristics, i.e. the differential pressure profile, production profile (i.e. cumulative produced volumes), endpoint relative permeability of CO2 (KrCO2) and residual water saturation (Swr) is a function of the associated fluid pressure. This indicates that for formations where CO2 can exist in a gaseous state, fluid pressure has more influence on multiphase flow characteristics in comparison to other parameters investigated. Overall, the increase in fluid pressure (40-70 bar), temperature (29-45 °C), and CO2 injection rate (0.1-2 ml/min) caused an increase in the differential pressure. The increase in differential pressure with increasing fluid pressure and injection rate indicate that viscous forces dominate the multi-phase flow. Nevertheless, increasing the differential pressure with temperature indicates that capillary forces dominate the multi-phase flow as viscous forces are expected to decrease with this increasing temperature. Capillary forces have a direct impact on the entry pressure and capillary number. Therefore, reducing the impact of capillary forces with increasing pressure and injection rate can ease the upward migration of CO2 (thereby, affecting the storage capacity and integrity of the sequestered CO2) and enhance displacement efficiency. On the other hand, increasing the impact of the capillary force with increasing temperature can result in a more secure storage of CO2 and a reduction in the displacement efficiency. Nevertheless, the change in pressure and temperature can also have a direct impact on storage capacity and security of CO2 due to their impact on density and hence on buoyancy forces. Thus, in order to decide the extent of change in storage capacity and security of CO2 with the change in the above-investigated parameters, a qualitative study is required to determine the size of the change in both capillary forces and buoyancy forces. The data showed a significant influence of the capillary forces on the pressure and production profiles. The capillary forces produced high oscillations in the pressure and production profiles while the increase in viscous forces impeded the appearance of these oscillations. The appearance and frequency of these oscillations depend on the fluid pressure, temperature, and CO2 injection rate but to different extents. The appearance of the oscillations can increase CO2 residual saturation due to the re-imbibition process accompanied with these oscillations, thereby increasing storage capacity and integrity of the injected CO2. The differential pressure required to open the blocked flow channels during these oscillations can be useful in calculating the largest effective pore diameters and hence the sealing efficiency of the rock. Swr was in ranges of 0.38-0.42 while KrCO2 was found to be less than 0.25 under our experimental conditions. Increasing fluid pressure, temperature, and CO2 injection rate resulted in an increase in the KrCO2, displacement efficiency (i.e. a reduction in the Swr), and cumulative produced volumes. For liquid CO2-water drainage displacements, the increase in fluid pressure (60-70 bar), CO2 injection rate (0.4-1ml/min) and salinity (1% NaCl, 5% NaCl, and 1% CaCl2) generated an increase in the differential pressure; the highest increase occurred with increasing the injection rate and the lowest with increasing the salinity. On the other hand, on the whole, increasing temperature (20-29 °C) led to a reduction in the differential pressure apart from the gradual increase occurred at the end of flooding.
|
110 |
Časosběrný monitoring aktivních svahových deformací pomocí elektrické odporové tomografie / Time-lapse monitoring of active slope deformations using electrical resistivity tomographyBelov, Tomáš January 2014 (has links)
The diploma thesis deals with time-lapse electrical resistivity tomography (TL-ERT) of active slope deformations. Slope deformations represent one of the important land-forming processes. Frequently, they can cause considerable property damages and can endanger health and lives of inhabitants. Therefore, we can consider them as potentially dangerous so complete understanding of their dynamics, and their mechanisms of origin, is essential. Electrical resistivity tomography (ERT) then represents an effective geophysical tool for slope deformation investigation. Within diploma thesis, the evaluation of the several different time-series of the ERT measurements was performed. Based on findings of the one- year (August 1013 to July 2014) monitoring of resistivity changes by ERT, and also, based on daily and hourly recurrences of measured resistivity data, the optimum measuring interval has been determined, namely 12 hours. The most applicable electrode arrays and their combinations were suggested based on a testing of different electrode configurations. The results of detailed measurement with 1 m electrode spacing offered the idea of shortening of the total length of the present permanent TL-ERT profile as well as shortening the electrode spacing. These conclusions and proposed adjustments then resulted in...
|
Page generated in 0.0482 seconds