• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examining Pathways for Water Loss from Mountain Lake, Giles County, Virginia

Joyce, William Lucas 13 July 2012 (has links)
Located in Giles County, Virginia, Mountain Lake has a documented history of dramatic water level fluctuations. Previous water balance studies have documented that the main cause of water loss is outflow to groundwater. However, the flow paths of water exiting the lake are unknown. This study applied hydrologic, geophysical, and dye tracer methods to examine the pathways for water loss and the possible geologic controls on these flow paths. Continuous lake level monitoring data show seasonal trends of draining and filling over a three year period. Electrical resistivity profiles suggest the presence of a large low-resistivity zone beneath the northern end of the lake. A dye tracer study yielded limited positive results, but dye detection in one stream and within the lake suggest complex flow dynamics. The most likely reasons for the lack of dye recovery include dilution of the dye during lake recovery, seepage of water below monitoring site locations, or formation of a temporary seal in the depressions created by influx of sediment during periods of lake bed exposure. / Master of Science
2

Hydraulic Evaluation of a Community Managed Wastewater Stabilization Pond System in Bolivia

Lizima, Louis 11 February 2013 (has links)
This work explores the hydraulic performance of a wastewater lagoon system located in San Antonio, Bolivia. The system consists of one facultative pond and two maturation ponds in series and is managed through a locally elected water committee. A tracer study was performed on the primary facultative pond and an analysis of the solids accumulation on the bottom of the facultative lagoon was also performed. The results were used to generate residence time distribution curves and provide an estimate of mean residence time in the system. The data was used to examine hydraulic efficiency as it relates to short-circuiting and dead zones. A sludge study accumulation study was performed using the white towel method and the resulting measurements were interpolated to determine a total estimated sludge volume of 169 m3 (which is 8% of the facultative pond volume). An orange study was also performed to assess the surface flow pattern in the system. The results were compared with a computational 2-d model. The 2-d model incorporated the estimated sludge distribution and provided a good fit for the tracer dye concentrations measured in the field over the 12 day study period. Simple models such as the Tanks in Series and the Completely mixed model were evaluated and abandoned because of their inability to model the physical behavior in the system. The Completely mixed model did however perform better than the Plug flow model. After comparing the tracer results from the reactor models that were considered: Tanks in Series, Completely mixed fluid, manual interpolation and the results from the 2-d cfd flow simulation, the results that provided the best fit for the data over 12 days was the manual interpolation method at a flow rate of 98 m3/day and configuration D at 60 m3/day. However, because of uncertainty as to what depth to obtain a representative area for the 2-d simplification and sensitivity to flow; all four configurations were considered for estimating the MHRT at the lowest measured flow rate of 60 m3/day. The results at a flow rate of 60 m3/day varied between 10.88 and 13.04 days for the MHRT with a hydraulic efficiency that varied between 33-51.6% (accounting for sludge volume). This is much shorter than the actual nominal retention time of 37 days and the design nominal retention time of 26 days. As a result it was concluded that short-circuiting was occurring in the facultative lagoon.
3

Design and development of a two dimensional scanning molecular tagging velocimetry (MTV) system

Ahmad, Farhan Unknown Date
No description available.
4

GROUND-PENETRATING RADAR IMAGES OF A DYE TRACER TEST WITHIN THE UNSATURATED ZONE AT THE SUSQUEHANNA-SHALE HILLS CZO

Pitman, Lacey January 2014 (has links)
Dye tracer and time-lapse ground-penetrating radar (GPR) were used to image preferential flow paths in the shallow, unsaturated zone on hillslopes in two adjacent watersheds within the Susquehanna-Shale Hills Critical Zone Observatory (CZO). At each site we injected about 50 L of water mixed with brilliant blue dye (4 g/L) into a trench cut perpendicular to the slope (~1.0 m long by ~0.20 m wide by ~0.20 m deep) to create a line of infiltration. GPR (800 MHz antennae with constant offset) was used to monitor the movement of the dye tracer downslope on a 1.0 m x 2.0 m grid with a 0.05 m line spacing. The site was then excavated and the stained pathways photographed to document the dye movement. We saw a considerable difference in the pattern of shallow preferential flow between the two sites despite similar soil characteristics and slope position. Both sites showed dye penetrating down to saprolite (~0.40 m); however, lateral flow migration between the two sites was different. At the Missed Grouse field site, the lateral migration was ~0.55 m as an evenly dispersed plume, but at distance of 0.70 m a finger of dye was observed. At the Shale Hills field site, the total lateral flow was ~0.40 m, dye was barely visible until the excavation reached ~0.10 m, and there was more evidence of distinct fingering in the vertical direction. Based on laboratory and field experiments as well as processing of the radargrams, the following conclusions were drawn: 1) time-lapse GPR successfully delineated the extent of lateral flow, but the GPR resolution was insufficient to detect small fingers of dye; 2) there was not a distinct GPR reflection at the regolith-saprock boundary, but this interface could be estimated from the extent of signal attenuation; 3) the preliminary soil moisture conditions may explain differences in the extent of infiltration at the two sites; 4) rapid infiltration into the underlying saprock limited the extent of shallow lateral flow at both sites and can be seen using the mass balance calculation and the lateral extent of dye within the radargrams; and 5) variations in flow patterns were observed between sites with similar settings at Susquehanna-Shale Hills CZO. / Geology
5

Fonctionnement et vulnérabilité d'un système karstique multicouche à partir d'une approche multi-traceurs et d'un suivi haute-résolution : application aux Sources du Toulon à Périgueux (Dordogne, France) / Functioning and Vulnerability of a multilayered karst aquifer using multitracers approach and high resolution monitoring. : application to Toulon Springs (Dordogne, France)

Lorette, Guillaume 10 July 2019 (has links)
Ce travail de thèse s’inscrit dans une démarche d’approfondissement des connaissances du fonctionnement des aquifères karstiques. Pour cela, le site pilote des Sources du Toulon, siège d’une alimentation multiréservoirs, a été choisi et offre une fenêtre d’observation privilégiée sur les relations hydrogéologiques entre les aquifères de la marge Nord du Bassin aquitain. Elles sont utilisées depuis 1832 pour l’alimentation en eau potable de la ville de Périgueux, et constituent actuellement son unique ressource.L’objectif de ce travail a été de tester une approche multi-traceurs et un suivi haute-résolution pour caractériser le fonctionnement et la vulnérabilité d’un aquifère karstique multicouche.L’utilisation d’une approche couplée hydrodynamique et hydrochimie a mis en évidence l’alimentation des Sources du Toulon par une ressource profonde et captive en complément d’un aquifère libre plus superficiel. Ces informations ont été intégrées dans le contexte hydrogéologique global de la zone d’étude pour proposer une nouvelle délimitation du bassin d’alimentation des Sources du Toulon.L’utilisation d’un suivi haute-résolution a permis de préciser le fonctionnement hydrogéologique du système karstique étudié. Il en ressort des fonctionnements différents suivants les crues, avec des transferts de masse pouvant s’étendre de quelques jours à quelques semaines.L’apport des isotopes des nitrates (δ15N-NO3- ; δ18O-NO3-) a permis d’identifier deux origines des nitrates mesurés dans les eaux de surface et souterraines : les fertilisants minéraux de synthèse utilisés pour l’agriculture, et les rejets d’assainissement individuels.L’évaluation temporelle de la vulnérabilité spécifique des Sources du Toulon à certains marqueurs de contamination tels que les particules, les éléments bactériologiques et les nitrates a permis de distinguer plusieurs masses d’eau superficielles et subsuperficielles participant à l’alimentation pendant les crues, et jouant un rôle différent dans le transfert des contaminants. / This work is included in an approach for a better knowledge of karst aquifers. For this, the Toulon Springs pilot site was chosen, and provides the opportunity to study relationships between multilayered karst aquifers of the northern edge of the Aquitaine sedimentary basin. Toulon Springs are major regional springs and are located in Périgueux (Dordogne County, France). They have been supplying water to the metropolitan area of Périgueux since 1832.This work aim to test an innovative multitracer approach coupled with a physicochemical high-resolution auto-monitoring to characterize functioning and vulnerability of a multilayered karst aquifer.The use of a coupled hydrodynamic and hydrochemical approach has highlighted Toulon Springs supply by a deep and captive aquifer, in addition to a more subsuperficial aquifer. This information has been incorporated into the global hydrogeological situation of the study area to propose a new delineation of Toulon Springs hydrogeological cathment.The use of a high-resolution monitoring enables to specify the hydrogeological functioning of the studied karst system. The analysis performed on several flood events, identify that mass transfer can range from a few days to a few weeks.The use of nitrate isotope (δ15N-NO3- ; δ18O-NO3-) enables to identify two main nitrate sources in both surface water and groundwater: (i) inorganic fertilizer; (ii) sewage from individual house.The last part of this work was to analyse Toulon Springs temporal vulnerability during floods to marker of contamination such as particles, dissolved organic carbon, nitrate, and bacteria. Hence, several water type from surface runoff, unsaturated zone and saturated zone were identify as responsible of contaminant transfer: (i) water from saturated zone is responsible of vulnerability to mineral particles ; (ii) water from unsaturated zone is responsible of vulnerability to nitrare ; (iii) water from surface runoff is responsible of vulnerability to bacteria contamination.
6

Experimental investigation of the stability of the colmation zone around leaky sewers

Nikpay, Mitra 08 December 2015 (has links) (PDF)
Sewage exfiltration from a sanitary and combined sewer systems and its percolation into porous medium results in a clogged or colmation layer in the nearby soil. In order to develop a comprehensive understanding of raw sewage transport mechanisms in porous media, investigations were carried out on the micro-scale properties of the multiphase system. In our laboratory experiments, the role of surfactants as a major organic chemical compound in wastewater was evaluated by using a surfactant solution as an artificial wastewater percolating into a porous media, represented by using columns and Plexiglas model. We studied flows of water and surfactants solution in saturated porous medium to detect the dynamic effects by means of measuring pressure and permeability as well as by visualization of flow regions and consequence for porosity along interfaces between water and surfactants solution. The tests revealed that mechanisms at interfaces between fluids and solids as well as between water and surfactants solution (i.e. wastewater) are significantly influencing the flow behavior. At the interfaces surfactant molecules are adsorbed or accumulate, respectively, and subsequently inducing electrical charges to those layers, altering the properties of fluids and these interfaces. Depending on the conditions, channels might be narrowed and thus decreasing the flow rate with a later erosion and increase of flow rates, or the flow and thus the erosive capacity might become intensified along the interface between surfactants solution and neighbouring water. In conclusion, the results of tests proved the surfactants to be an important controlling factor in the hydraulic properties of wastewater percolating into soil.
7

Experimental investigation of the stability of the colmation zone around leaky sewers

Nikpay, Mitra 01 October 2015 (has links)
Sewage exfiltration from a sanitary and combined sewer systems and its percolation into porous medium results in a clogged or colmation layer in the nearby soil. In order to develop a comprehensive understanding of raw sewage transport mechanisms in porous media, investigations were carried out on the micro-scale properties of the multiphase system. In our laboratory experiments, the role of surfactants as a major organic chemical compound in wastewater was evaluated by using a surfactant solution as an artificial wastewater percolating into a porous media, represented by using columns and Plexiglas model. We studied flows of water and surfactants solution in saturated porous medium to detect the dynamic effects by means of measuring pressure and permeability as well as by visualization of flow regions and consequence for porosity along interfaces between water and surfactants solution. The tests revealed that mechanisms at interfaces between fluids and solids as well as between water and surfactants solution (i.e. wastewater) are significantly influencing the flow behavior. At the interfaces surfactant molecules are adsorbed or accumulate, respectively, and subsequently inducing electrical charges to those layers, altering the properties of fluids and these interfaces. Depending on the conditions, channels might be narrowed and thus decreasing the flow rate with a later erosion and increase of flow rates, or the flow and thus the erosive capacity might become intensified along the interface between surfactants solution and neighbouring water. In conclusion, the results of tests proved the surfactants to be an important controlling factor in the hydraulic properties of wastewater percolating into soil.
8

Temporal and spatial infiltration characteristics of soil under acacia and pine plantations in the mountainous area of Van Don, Quang Ninh, Vietnam

Bui, Xuan Dung, Vu, Thi Hoai Thu, Nguyen, Thi My Linh, Gomi, Takashi 14 May 2020 (has links)
To determine the soil infiltration characteristics of pine and acacia plantations, we used a double-ring infiltrometer in 15 different locations of up-hill, mid-hill and down-hill part in each kind of plantation from June to August, 2018. The spatial infiltration characteristics of the soil at three plots (with no tree, with acacia tree and with pine tree) was determined by dye tracer method. The factors having an impact to the infiltration process were also analyzed. The main findings include: (1) The soil infiltration rate under both pine and acacia plantation decreased over time and it was the highest in the bottom of the hill and the lowest in the middle of the hill. The infiltration rate and the total infiltrated water in one hour at the acacia plantation were higher than ones at the pine plantation. However, statistical significant difference was only found for stable infiltration rate between two plantations; (2) The area and the depth of infiltrated water were the highest at the plot without trees, smaller at the soil of acacia plot and smallest at the soil of pine plot. All spatial infiltration rates were within the findings of previous studies; (3) The result indicated that soil with high ground cover has high infiltration rate. / Để xác định đặc điểm thấm nước của đất dưới rừng trồng Thông và Keo, vòng đôi đo tốc độ thấm đã được sử dụng để đo ở sườn trên, sườn giữa và sườn dưới (5 lần/ ví trí) cho mỗi loại hình rừng từ tháng 6-8/2018. Trong khi, thuốc nhuộm được sử dụng để kiểm tra đặc điểm thấm nước của đất theo không gian trên 3 ô (ô không có cây, ô trồng Keo và ô trồng Thông). Các yếu tố ảnh hưởng đến đặc điểm thấm nước cũng được phân tích. Kết quả chính thu được: (1) Tốc độ thấm ở cả hai loại rừng giảm dần theo thời gian và cao nhất ở sườn dưới, nhỏ nhất ở sườn giữa. Cả tốc độ thấm và tổng lượng nước thấm trong một giờ của rừng keo đều cao hơn so với rừng Thông. Tuy nhiên, chỉ có tốc độ thấm ổn định là khác biệt có ý nghĩa thống kê; (2) Diện tích và độ sâu nước thấm xuống đất cao nhất ở ô không có cây, nhỏ hơn ở ô trồng Keo và nhỏ nhất ở ô trồng Thông; (3) Độ che phủ thực vật càng cao thì lượng nước thấm càng lớn.

Page generated in 0.0683 seconds