• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

20–25 Gbit/s low-power inductor-less single-chip optical receiver and transmitter frontend in 28 nm digital CMOS

Szilàgyi, Làszlò, Belfiore, Guido, Henker, Ronny, Ellinger, Frank 29 May 2020 (has links)
The design of an analog frontend including a receiver amplifier (RX) and laser diode driver (LDD) for optical communication system is described. The RX consists of a transimpedance amplifier, a limiting amplifier, and an output buffer (BUF). An offset compensation and common-mode control circuit is designed using switched-capacitor technique to save chip area, provides continuous reduction of the offset in the RX. Active-peaking methods are used to enhance the bandwidth and gain. The very low gate-oxide breakdown voltage of transistors in deep sub-micron technologies is overcome in the LDD by implementing a topology which has the amplifier placed in a floating well. It comprises a level shifter, a pre-amplifier, and the driver stage. The single-chip frontend, fabricated in a 28 nm bulk-digital complementary metal–oxide–semiconductor (CMOS) process has a total active area of 0.003 mm² , is among the smallest optical frontends. Without the BUF, which consumes 8 mW from a separate supply, the RX power consumption is 21 mW, while the LDD consumes 32 mW. Small-signal gain and bandwidth are measured. A photo diode and laser diode are bonded to the chip on a test-printed circuit board. Electro-optical measurements show an error-free detection with a bit error rate of 10⁻¹² at 20 Gbit/s of the RX at and a 25 Gbit/s transmission of the LDD.
2

Investigation of Modulation Methods to Synthesize High Performance Resonator-Based RF MEMS Components

Xu, Changting 01 February 2018 (has links)
The growing demand for wireless communication systems is driving the integration of radio frequency (RF) front-ends on the same chip with multi-band functionality and higher spectral efficiency. Microelectromechanical systems (MEMS) have an overarching applicability to RF communications and are critical components in facilitating this integration process. Among a variety of RF MEMS devices, piezoelectric MEMS resonators have sparked significant research and commercial interest for use in oscillators, filters, and duplexers. Compared to their bulky quartz crystal and surface acoustic wave (SAW) counterparts, MEMS resonators exhibit impressive advantages of compact size, lower production cost, lower power consumption, and higher level of integration with CMOS fabrication processes. One of the promising piezoelectric MEMS resonator technologies is the aluminum nitride (AlN) contour mode resonator (CMR). On one hand, AlN is chemically stable and offers superior acoustic properties such as large stiffness and low loss. Furthermore, CMRs offer low motional resistance over a broad range of frequencies (few MHZ to GHz), which are lithographically-definable on the same silicon substrates. To date, RF MEMS resonators (include CMRs) have been extensively studied; however, one aspect that was not thoroughly investigated is how to modulate/tune their equivalent parameters to enhance their performance in oscillators and duplexers. The goal of this thesis is to investigate various modulation methods to improve the thermal stability of the resonator, its “effective” quality factor when used in an oscillator, and build completely novel non-reciprocal components. Broadly defined, modulation refers to the exertion of a modifying or controlling influence on something, herein specifically, the resonator admittance. In this thesis, three categories of modulation methods are investigated: thermal modulation, force modulation, and external electronic modulation. Firstly, the AlN CMR’s center frequency can be tunned by the applied thermal power to the resonator body. The resonator temperature is kept constant (for example, 90 °C) via a temperature sensor and feedback control such that the center frequency is stable over the whole operation temperature range of interest (e.g. –35 to 85 °C). The maximum power consumption to sustain the maximum temperature difference (120 ºC in this thesis) between resonator and ambient is reduced to a value as low as 353 μW – the lowest ever reported for any MEMS device. These results were attained while simultaneously maintaining a high quality factor (up to 4450 at 220 MHz device). The feedback control was implemented by either analog circuits or via a microprocessor. The analog feedback control, which innovatively utilized a dummy resistor to compensate for temperature gradients, resulted in a total power consumption of 3.8 mW and a frequency stability of 100 ppm over 120 ºC. As for the digital compensation, artificial neural network algorithm was employed to facilitate faster calibration of look-up tables for multiple frequencies. This method attained a frequency stability of 14 ppm over 120 ºC. The second modulation method explored in this thesis is based on the use of an effective external force to enhance the 3-dB quality factor of AlN CMRs and improve the phase noise performance of resonator-based oscillators. The force modulation method was embodied in a two-port device, where one of the two ports is used as a one-port resonator and the other is driven by an external signal to effectively apply an external force to the first port. Through this technique, the quality factor of the resonator was boosted by 140 times (up to 150,000) and the phase noise of the corresponding oscillator realized using the resonator was reduced by 10 dBc/Hz. Lastly, a novel magnetic-free electrical circulator topology that facilitates the development of in-band full duplexers (IBFD) for simultaneous transmit and receive (STAR) is proposed and modeled. Fundamentally, a linear time-invariant (LTI) filter network parametrically modulated via a switching matrix is used to break the reciprocity of the filter. The developed model accurately predicts the circulator behavior and shows very good agreement with the experimental results for a 21.4 MHz circulators built with MiniCircuit filter and switch components. Furthermore, a high frequency (1.1 GHz) circulator was synthesized based on AlN MEMS bandpass filters and CMOS RF switches, hence showing a compact approach that can be used in handheld devices. The modulation frequency and duty cycle are optimized so that the circulator can provide up to 15 dB of isolation over the filter bandwidth while good power transfer between the other two ports is maintained. The demonstrated device is expected to intrinsically offer low noise and high linearity. The combination of the first two modulation methods facilitates the implementation of monolithic, temperature-stable, ultra-low noise, multi-frequency oscillator banks. The third modulation technique that was investigated sets the path for the development of CMOS-compatible in-band full duplexers for simultaneous transmit and receive and thus facilitates the efficient utilization of the electromagnetic spectrum. With the aid of all these three modulation approaches, the author believes that a fully integrated, multi-frequency, spectrum-efficient transceiver is enabled for next-generation wireless communications.
3

SiGe HBT BiCMOS RF front-ends for radar systems

Poh, Chung Hang 01 November 2011 (has links)
The objective of this research is to explore the possibilities of developing transmit/receive (T/R) modules using silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) BiCMOS technology to integrate with organic liquid crystal polymer (LCP) packages for the next-generation phased-array radar system. The T/R module requirements are low power, compact, lightweight, low cost, high performance, and high reliability. All these requirements have provided a very strong motivation for developing fully monolithic T/R modules. SiGe HBT BiCMOS technology is an excellent candidate to integrate all the RF circuit blocks on the T/R module into a single die and thus, reducing the overall cost and size of the phase-array radar system. In addition, this research also investigates the effects and the modeling issues of LCP package on the SiGe circuits at X-band.
4

Σχεδίαση και ανάπτυξη ολοκληρωμένων κυκλωμάτων για συστήματα υπερευρείας ζώνης με έμφαση στα κυκλώματα του πομπού / Design and development of integrated circuits for ultra wideband systems, with emphasis on the transmitter circuits

Παπαμιχαήλ, Μιχαήλ 14 May 2012 (has links)
Η πληθώρα των εφαρμογών που μπορεί να εξυπηρετήσει η τεχνολογία Υπερευρείας Ζώνης (UWB), από τα ασύρματα προσωπικά δίκτυα υψηλών ταχυτήτων, μέχρι τα ασύρματα δίκτυα αισθητήρων με δυνατότητες ακριβούς εντοπισμού θέσης, και τα ασύρματα δίκτυα ιατρικών αισθητήρων, έχει προκαλέσει έντονο ερευνητικό ενδιαφέρον γύρω από τις υλοποιήσεις UWB συστημάτων. Η ασυνήθιστα μεγάλη περιοχή συχνοτήτων που έχει ανατεθεί στο UWB, από τα 3.1-10.6 GHz, επιτρέπει την επίτευξη υψηλών ταχυτήτων με απλά σχήματα διαμόρφωσης, ωστόσο, λόγω της διαμοίρασης του φάσματος με τις υφιστάμενες τεχνολογίες ασύρματης δικτύωσης, οι UWB εκπομπές πρέπει να περιορίζονται σε ισχύ κάτω από το κατώφλι των -41.3 dBm/MHz, ικανοποιώντας πολύ αυστηρές μάσκες εκπομπής που εισάγουν έντονες προκλήσεις στη σχεδίαση των πομπών. Η υλοποίηση αναδιατάξιμων UWB πομπών σε σύγχρονες CMOS τεχνολογίες, με υψηλή φασματική ευελιξία, ταχύτητα και ποιότητα διαμόρφωσης, καθώς και με χαμηλή κατανάλωση, αποτέλεσε το αντικείμενο της συγκεκριμένης διατριβής. Υιοθετώντας την αρχιτεκτονική Multi-Band Impulse-Radio (MB-IR) σε συνδυασμό με την τεχνική Direct Sequence BPSK, η έρευνα προσανατολίστηκε προς την ανάπτυξη καινοτόμων μονάδων βασικής ζώνης, με στόχο την ενεργειακά αποδοτική αντιστροφή Γκαουσιανών μορφοποιημένων παλμών υψηλής ποιότητας φάσματος και διάρκειας μικρότερης ακόμα και από 1 nsec. Προς αυτή την κατεύθυνση, αναπτύχθηκε μια καινοτόμα γεννήτρια Γκαουσιανών παλμών με πολύ χαμηλούς πλευρικούς λοβούς στο φάσμα, τυπικά κάτω από -40 dB, ώστε να υποστηρίζονται οι αυστηρότερες μάσκες εκπομπής ή και μελλοντικές. Η σχεδίασης της προτεινόμενης γεννήτριας είχε ως κριτήριο την ευέλικτη ρύθμιση της διάρκειας των παραγόμενων παλμών, και αξιοποίησε τη χαρακτηριστική μεταφοράς τάσης ενός ωμικά φορτωμένου, ασύμμετρου CMOS αντιστροφέα. Η γεννήτρια βασίζεται κυρίως σε ψηφιακά κυκλώματα πολύ χαμηλής τάσης και, σε σύγκριση με τις υφιστάμενες υλοποιήσεις, παρουσιάζει σημαντικό προβάδισμα στον τομέα της ταχύτητας, καθώς και στο πλάτος εξόδου, η μεγάλη τιμή του οποίου χαλαρώνει σημαντικά τη σχεδίαση του RF front end. Η γεννήτρια μελετήθηκε διεξοδικά, διεξήχθη ανάλυση κλιμάκωσης, έγινε εξαγωγή σχεδιαστικών εξισώσεων και αναπτύχθηκαν εργαλεία λογισμικού για την αυτοματοποιημένη σχεδίασή της. Για περαιτέρω αύξηση της ταχύτητας των παλμικών σημάτων εφαρμόσθηκε ειδική σχεδίαση, η οποία αντιπραγματεύεται την ταχύτητα με το επίπεδο των λοβών του φάσματος. Για την αποδοτική BSPK διαμόρφωση των Γκαουσιανών παλμών αναπτύχθηκε ειδική τοπολογία “Μεταγωγής Σήματος Πυροδότησης Πλήρους Ισορροπίας με Up-Conversion”. Η τοπολογία αυτή, σε αντίθεση με τις ανταγωνιστικές τοπολογίες, αποφεύγει την αντιστροφή του παλμού με αναλογικά κυκλώματα υψηλής κατανάλωσης, αλλά και την αναλογική μεταγωγή, καθώς η διαμόρφωση λαμβάνει χώρα πριν από την παραγωγή των παλμών. Παράλληλα, επιτυγχάνονται υψηλοί ρυθμοί, καθώς και υψηλή ποιότητα διαμόρφωσης λόγω των ισορροπημένων μονοπατιών της τοπολογίας. Η γεννήτρια μαζί με το διαμορφωτή αποτελούν τις καινοτόμες παρεμβάσεις στη μονάδα Βασικής Ζώνης του προτεινόμενου πομπού. Για την ολοκλήρωση της λειτουργικότητας του πομπού, αναπτύχθηκε ένα RF front end, το οποίο αποτελείται από έναν διπλά ισορροπημένο μίκτη, έναν LO buffer, ένα μετατροπέα διαφορικού σήματος σε απλό, και έναν ενισχυτή ισχύος, ο οποίος είναι προσαρμοσμένος στα 50 Ohms, χωρίς να απαιτεί κανένα εξωτερικό στοιχείο. Το RF front end ολοκληρώθηκε μαζί με τη μονάδα βασικής ζώνης, και ο ολοκληρωμένος πομπός κατασκευάστηκε σε τεχνολογία CMOS 130 nm. Το ολοκληρωμένο προσαρτήθηκε στην RF πλακέτα συστήματος με την τεχνική Chip on Board. Για την επιτυχία του συστήματος με την πρώτη προσπάθεια έγινε συσχεδίαση σε επίπεδο IC-Package-PCB, δίνοντας ιδιαίτερη έμφαση στα ζητήματα Signal/Power Integrity. Ο πομπός παρουσίασε την υψηλότερη ταχύτητα από τις ανταγωνιστικές MB-IR UWB υλοποιήσεις, ίση με 1.5 Gbps, με αντίστοιχη ενεργειακή αποδοτικότητα 21 pJoule/bit και μέτρο διανυσματικού σφάλματος 5.5%. Ο πομπός βελτίωσε τους πλευρικούς λοβούς στο φάσμα περισσότερο από 10 dB, ενώ η διατριβή, εκμεταλλευόμενη την αναδιαταξιμότητα του πομπού, παρουσιάζει, επιπλέον, τις πρώτες μετρήσεις σε ταχύτητες εκατοντάδων Mbps για ικανοποίηση της χαμηλής ζώνης της πρόσφατα θεσμοθετημένης, και εξαιρετικά αυστηρής, ευρωπαϊκής μάσκας εκπομπής. / The multitude of applications that Ultra-Wideband (UWB) technology can serve, from high-speed Wireless Personal Area Networks, to Wireless Sensor Networks with precision Geolocation abilities, and Wireless Medical Networks, has attracted intense research interest in the implementation of UWB systems. The unusually wide range of frequencies assigned to UWB, from 3.1-10.6 GHz, allows UWB systems employing low order modulation schemes to enjoy high throughput at low power consumption. However, since UWB shares the spectrum with existing wireless networking technologies, UWB emissions must be limited to a power spectral density below the threshold of -41.3 dBm/MHz, satisfying very stringent emission masks and introducing great challenges in the design of UWB transmitters. The subject of this thesis is the design of low power, fully integrated, reconfigurable CMOS UWB transmitters, with high spectral flexibility, high speed and high modulation quality. Adopting the Multi-Band Impulse-Radio architecture, in conjunction with the Direct Sequence BPSK modulation, the research focused on the development of a baseband unit, able to precisely invert Gaussian shaped, subnanosecond pulses. The key contributions of this thesis are a CMOS Gaussian Pulse Generator and a BSPK modulation topology, which jointly constitute the proposed baseband unit. The Pulse Generator (PG) is based on non-linear shaping, so as to facilitate the configurability of the output pulse duration, and exploits the voltage transfer characteristic of a Resistive Loaded Asymmetrical CMOS Inverter, which results in spectral sidelobes typically better than -40 dB. The PG incorporates mostly-digital low voltage circuits, while the MOSFET devices that undertake the pulse shaping avoid exclusive operation in weak inversion, in contrast to previous implementations. Consequently, the proposed CMOS PG is able to support higher throughput, as well as higher output amplitude, which relaxes considerably the design of the RF front end. This thesis presents a systematic design procedure and a scaling analysis of the non-linear pulse shaper. Moreover, in order to further increase the speed, a special PRF boost technique is proposed, which trades off speed and spectral efficiency for the spectral sidelobes level. Regarding the BPSK modulator, this work introduces the “Trigger Switching Fully Balanced Up-Conversion” topology, which avoids the use of power-hungry and distortion-prone analog circuits for the accurate inversion of the subnanosecond shaped pulses, as well as avoids the application of analog waveform switching to the baseband pulses, since the baseband modulation takes place before the generation of the pulses. The digital nature of the switching lends itself to high data rates, while the balanced paths of the topology ensure high modulation quality with minimal design effort. Wafer probing measurements confirmed the high performance of the baseband unit. The functionality of the transmitter was completed by the development of an RF front end which consists of a double balanced mixer, an LO buffer, a differential to single-ended (DtoSE) converter, and a power amplifier which is ready to drive a 50 Ohms load without requiring any off-chip components. The integrated transmitter, which incorporates the proposed baseband unit and the RF front end, was fabricated in 130 nm CMOS technology. The transmitter RFIC was directly attached to the system RF PCB using the Chip-on-Board packaging option. The First-Pass success of the system was ensured by paying particular attention to Signal/Power Integrity issues and following an IC-Package-PCB co-design procedure. The transmitter was measured up to 1.5 Gbps, which, to the author’s knowledge, was the highest speed amongst the competitive Multi-Band Impulse-Radio UWB implementations in the literature. The corresponding energy efficiency was 21 pJoule/bit and the Error Vector Magnitude (EVM) 5.5%, while the proposed transmitter improved the spectral sidelobes by over 10 dB. Exploiting the reconfigurability of the transmitter, this thesis presents the first measurements at multi-Mbps speeds that completely meet the final version of the European spectrum emission mask.

Page generated in 0.0417 seconds