• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In-field Built-in Self-test for Measuring RF Transmitter Power and Gain

January 2015 (has links)
abstract: RF transmitter manufacturers go to great extremes and expense to ensure that their product meets the RF output power requirements for which they are designed. Therefore, there is an urgent need for in-field monitoring of output power and gain to bring down the costs of RF transceiver testing and ensure product reliability. Built-in self-test (BIST) techniques can perform such monitoring without the requirement for expensive RF test equipment. In most BIST techniques, on-chip resources, such as peak detectors, power detectors, or envelope detectors are used along with frequency down conversion to analyze the output of the design under test (DUT). However, this conversion circuitry is subject to similar process, voltage, and temperature (PVT) variations as the DUT and affects the measurement accuracy. So, it is important to monitor BIST performance over time, voltage and temperature, such that accurate in-field measurements can be performed. In this research, a multistep BIST solution using only baseband signals for test analysis is presented. An on-chip signal generation circuit, which is robust with respect to time, supply voltage, and temperature variations is used for self-calibration of the BIST system before the DUT measurement. Using mathematical modelling, an analytical expression for the output signal is derived first and then test signals are devised to extract the output power of the DUT. By utilizing a standard 180nm IBM7RF CMOS process, a 2.4GHz low power RF IC incorporated with the proposed BIST circuitry and on-chip test signal source is designed and fabricated. Experimental results are presented, which show this BIST method can monitor the DUT’s output power with +/- 0.35dB accuracy over a 20dB power dynamic range. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
2

A Fully-Integrated Four-way Outphasing Architecture in Heterogeneously Integrated CMOS/GaN Process Technologies

LaRue, Matthew 11 September 2018 (has links)
No description available.
3

Energy-Efficient RF Transmitter and Receiver Using Injection-Locked Oscillators

Chen, Chi-Tsan 30 July 2012 (has links)
Future wireless communication systems will have higher data transmission rates and energy efficiencies than those used today. This fact raises serious challenges to the design of conventional transceiver architectures. This doctoral research develops energy-efficient RF transmitters and receivers for next-generation wireless communications. It begins with a theoretical analysis of the injection locking of oscillators and a modified Class-E power amplifier (PA) for use in developing the proposed transmitter and receiver. Based on the presented theory, a novel envelope elimination and restoration (EER)/polar transmitter using injection-locked oscillators (ILOs) and a novel cognitive polar receiver using two ILO stages are proposed. The EER/polar transmitter combines the approaches of EER/polar modulation and injection locking to achieve linear amplification with a high gain and high efficiency. Experimental results demonstrate its effectiveness for delivering WCDMA and EDGE signals. Additionally, the cognitive polar receiver utilizes two ILO stages to extract the modulation envelope and phase components of a received nonconstant envelope modulation signal without using a phase-locked loop (PLL)-based carrier recovery circuit. Experiments are conducted to verify the feasibility of the novel architecture by performing £k/4 DQPSK and QPSK demodulation. Rigorous theoretical analysis and experimental verification prove that both the proposed transmitter and the receiver are effective for energy-efficient wireless communications.
4

FEKO ANALYSIS OF ANTENNAS ON PLATES AND THE IMPACT ON TOMOGRAPHIC IMAGING

Abdusamad, Abdunaser M. 15 June 2020 (has links)
No description available.
5

Lokalizace RF vysilače / Localization of RF transmiter

Mikuláštík, Jiří January 2014 (has links)
The thesis deal with possibility of localization of avalanche victims. Main focus is for RF avalanche beacons. The major objects of this thesis are design and construction of this device. A large part of thesis describes design of avalanche beacon and particular steps of realization. The design take into account the compatibility with commercial beacons. The paramters of designed device are verified by testing and measurement.
6

Low Power Cmos Circuit Design And Reliability Analysis For Wireless Me

Sadat, Md Anwar 01 January 2004 (has links)
A sensor node 'AccuMicroMotion' is proposed that has the ability to detect motion in 6 degrees of freedom for the application of physiological activity monitoring. It is expected to be light weight, low power, small and cheap. The sensor node may collect and transmit 3 axes of acceleration and 3 axes of angular rotation signals from MEMS transducers wirelessly to a nearby base station while attached to or implanted in human body. This dissertation proposes a wireless electronic system-on-a-single-chip to implement the sensor in a traditional CMOS process. The system is low power and may operate 50 hours from a single coin cell battery. A CMOS readout circuit, an analog to digital converter and a wireless transmitter is designed to implement the proposed system. In the architecture of the 'AccuMicroMotion' system, the readout circuit uses chopper stabilization technique and can resolve DC to 1 KHz and 200 nV signals from MEMS transducers. The base band signal is digitized using a 10-bit successive approximation register analog to digital converter. Digitized outputs from up to nine transducers can be combined in a parallel to serial converter for transmission by a 900 MHz RF transmitter that operates in amplitude shift keying modulation technique. The transmitter delivers a 2.2 mW power to a 50 Ù antenna. The system consumes an average current of 4.8 mA from a 3V supply when 6 sensors are in operation and provides an overall 60 dB dynamic range. Furthermore, in this dissertation, a methodology is developed that applies accelerated electrical stress on MOS devices to extract BSIM3 models and RF parameters through measurements to perform comprehensive study, analysis and modeling of several analog and RF circuits under hot carrier and breakdown degradation.
7

Výkonový zesilovač pro pásmo krátkých vln / Shortwave power amplifier

Kufa, Jan January 2014 (has links)
The aim of the master´s thesis is to create a high-frequency amplifier with switching power amplifier classes among classes A, B, C with output power of 10 W. The amplifier operates at frequency from 3.5 MHz to 14 MHz. Master´s thesis includes also theoretical analysis, design of lowpass filter and amplifiers and their simulation, mechanical realization and measured parameters of the amplifier.
8

Low Power And Low Spur Frequency Synthesizer Circuit Techniques For Energy Efficient Wireless Transmitters

Manikandan, R R 09 1900 (has links) (PDF)
There has been a huge rise in interest in the design of energy efficient wireless sensor networks (WSN) and body area networks (BAN) with the advent of many new applications over the last few decades. The number of sensor nodes in these applications has also increased tremendously in the order of few hundreds in recent years. A typical sensor node in a WSN consists of circuits like RF transceivers, micro-controllers or DSP, ADCs, sensors, and power supply circuits. The RF transmitter and receiver circuits mainly the frequency synthesizers(synthesis of RF carrier and local oscillator signals in transceivers) consume a significant percentage of its total power due to its high frequency of operation. A charge-pump phase locked loop (CP-PLL) is the most commonly used frequency synthesizer architecture in these applications. The growing demands of WSN applications, such as low power consumption larger number of sensor nodes, single chip solution, and longer duration operation presents several design challenges for these transmitter and frequency synthesizer circuits in these applications and a few are listed below, Low power frequency synthesizer and transmitter designs with better spectral performance is essential for an energy efficient operation of these applications. The spurious tones in the frequency synthesizer output will mix the interference signals from nearby sensor nodes and from other interference sources present nearby ,to degrade the wireless transmitter and receiver performance[1]. With the increased density of sensor nodes (more number of in-band interference sources) and degraded performance of analog circuits in the nano-meter CMOS process technologies, the spur reduction techniques are essential to improve the performance of frequency synthesizers in these applications. A single chip solution of sensor nodes with its analog and digital circuits integrated on the same die is preferred for its low power, low cost, and reduced size implementation. However, the parasitic interactions between these analog and digital sub-systems integrated on a common substrate, degrade the spectral performance of frequency synthesizers in these implementations[2]. Therefore, techniques to improve the mixed signal integration performance of these circuits are in great demand. In this thesis, we present a custom designed energy efficient 2.4 GHz BFSK/ASK transmitter architecture using a low power frequency synthesizer design technique taking advantage of the CMOS technology scaling benefits. Furthermore, a few design guidelinesandsolutionstoimprovethespectralperformanceoffrequency synthesizer circuits and in-turn the performance of transmitters are also presented. The target application being short distance, low power, and battery operated wireless communication applications. The contributions in this thesis are, Spectral performance improvement techniques The CP mismatch current is a dominant source of reference spurs in the nano-meter CMOS PLL implementations due to its worsened channel length modulation effect [3]. In this work, we present a CP mismatch current calibration technique using an adaptive body bias tuning of its PMOS transistors. Chip prototype of 2.4 GHzCP-PLLwith the proposed CP calibration technique was fabricated in UMC 0.13 µm CMOS process. Measurements show a CP mismatch current of less than 0.3 µA(0.55 %) using the proposed calibration technique over the VCO control voltage range 0.3 to 1 V. The closed loop PLL measurements using the proposed technique exhibited a 9dB reduction in the reference spur levels across the PLL output frequency range 2.4 -2.5 GHz. The parasitic interactions between analog and digital circuits through the common substrate severely affects the performance of CP-PLLs. In this work, we experimentally demonstrate the effect of periodic switching noise generated from the digital buffers on the performance of charge-pump PLLs. The sensitivity of PLL performance metrics such as output spur level, phase noise, and output jitter are monitored against the variations in the properties of a noise injector digital signal. Measurements from a 500 MHz CP-PLL shows that the pulsed noise injection with the duty cycle of noise injector signal reduced from 50% to 20%, resulted in a 12.53 dB reduction in its output spur level and a 107 ps reduction in its Pk-Pk deterministic period jitter performance. Low power circuit techniques A low power frequency synthesizer design using a digital frequency multiplication technique is presented. The proposed frequency multiply by 3 digital edge combiner design having a very few logic gates, demonstrated a significant reduction in the power consumption of frequency synthesizer circuits, with an acceptable spectral performance suitable for these relaxed performance applications. A few design guidelines and techniques to further improve its spectral performance are also discussed and validated through simulations. Chip prototypes of 2.4 GHz CP-PLLs with and without digital frequency multiplier circuits are fabricated in UMC 0.13 µm CMOS process. The 2.4 GHz CP-PLL using the proposed digital frequency multiplication technique (10.7 mW) consumed a much reduced power compared to a conventional implementation(20.3 mW). A custom designed, energy efficient 2.4 GHz BFSK/ASK transmitter architecture using the proposed low power frequency synthesizer design technique is presented. The transmitter uses a class-D power amplifier to drive the 50Ω antenna load. Spur reduction techniques in frequency synthesizers are also used to improve the spectral performance of the transmitter. A chip prototype of the proposed transmitter architecture was implemented in UMC0.13 µm CMOS process. The transmitter consume14 mA current from a 1.3V supply voltage and achieve improved energy efficiencies of 0.91 nJ/bit and 6.1 nJ/bit for ASK and BFSK modulations with data rates 20Mb/s & 3Mb/s respectively.

Page generated in 0.0889 seconds