• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2580
  • 609
  • 345
  • 332
  • 60
  • 53
  • 52
  • 34
  • 34
  • 34
  • 34
  • 34
  • 34
  • 31
  • 26
  • Tagged with
  • 5052
  • 743
  • 618
  • 614
  • 556
  • 476
  • 416
  • 415
  • 406
  • 402
  • 395
  • 384
  • 377
  • 376
  • 344
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

The pattern of ribonucleic acid synthesis in maturing mouse oocytes.

Bloom, Arthur Michael. January 1971 (has links)
No description available.
192

On the purification of soybean leghemoglobin mRNA

Lumbroso, Rose January 1976 (has links)
No description available.
193

RNA synthesis in maize mitochondria : the identification of autonomously replicating RNA species and a kinetic analysis of transcript accumulation

Finnegan, Patrick Michael January 1989 (has links)
No description available.
194

Retroviral transfer of BCR-ABL Ribozyme sequences to primary human chronic myeloid leukaemia cells

Presgrave, Peter John, School of Medicine, UNSW January 2007 (has links)
Chronic Myeloid Leukaemia (CML) is a clonal haemopoietic stem cell (HSC) disorder characterised by the presence of a disease-specific gene, BCR-ABL, which leads to the production of a bcr-abl mRNA transcript. CML is an ideal candidate for gene therapy using ribozymes (Rz), catalytic RNA molecules that cleave and inactivate target RNA in a sequence specific manner. Limited data is available on the activity of ribozymes in human CML cells. In this study, hammerhead ribozyme sequences directed against the b3a2 bcr-abl mRNA sequence (Rz6-Rz10) were cloned into several retroviral vectors. Initial experiments using MSCVHSA based retroviral constructs failed to express the sequences in cell lines. Rz cDNA fragments were then cloned into an LNL6 based retroviral vector (LGL1) encoding a GFP reporter gene and stable LGLRz constructs produced. Using cell sorting, high-titre PA317 producer cell line clones were isolated. Transcriptional silencing of the LGLRz6 producer cell line occurred with prolonged culture, with partial reversal on treatment with the demethylating agent 5' azacytidine. To assess the activity of these constructs in human cells, CD34+ HSC were isolated from newly diagnosed b3a2 Ph+ CML patients. Cells were transduced with either control LGL vector or the LGLRz6 construct. Transduced human cells were sorted based on GFP expression and placed into long-term HSC culture (LTC-IC assays). Using a common cDNA, RT-PCR was performed to detect the expression of both the transgene and bcr-abl in individual colonies derived from the LTCIC assay at various time points, allowing assessment of the effect of transgene expression on bcr-abl expression. LGLRz transgene expression was detectable for up to 6 weeks in culture. Colony RT-PCR results from 3 patients showed that expression of the LGLRz6 construct was associated with decreased bcr-abl expression. It also appeared that the reduced bcr-abl expression decreased the proliferation of Ph+ cells leading to their loss from culture. In summary, these results appear to show an effect of a retroviral vector containing a bcr-abl Rz sequence on human CML HSC. Targeting of bcr-abl remains a valid therapeutic goal in the Imatinib era, particularly if problems related to effective ribozyme delivery and targeting can be overcome.
195

Studies of velvet tobacco mottle virus RNA replication by enzyme-template complexes in extracts from infected leaves

Rohozinski, J. (Jan) January 1985 (has links) (PDF)
Bibliography: leaves 133-141.
196

Aptamers to the hepatitis C virus polymerase

Jones, Louisa Alice School of Biotechnology And Biomolecular Sciences, UNSW January 2005 (has links)
Treatments for the hepatitis C virus (HCV) are currently only partially effective. Research into antivirals directed at HCV viral proteins are commonly based and tested on a single genotype, namely genotype 1. This is despite the high level of variability of the RNA virus and the frequency of infection with genotypes other than 1. The systematic evolution of ligands by exponential enrichment (SELEX) is a novel in vitro approach for the isolation of antiviral agents. SELEX allows rapid screening of vast nucleic acid libraries to isolate sequences (termed aptamers) that bind to target proteins with high affinity. The SELEX approach was used in the present study to isolate DNA aptamers to the RNAdependent RNA polymerase (RdRp) [non-structural protein B (NS5B)] protein of HCV subtype 3a, with the aim of inhibiting polymerase activity. Ten rounds of selection were performed using a Biacore 2000 and resultant aptamers cloned from rounds 2, 4, 8 and 10. Sequences of aptamers were aligned to elucidate common motifs and a proportion of the aptamers from rounds 8 and 10 (29/48) were screened for binding ability using the Biacore. The five ???best binding??? aptamers were investigated for inhibition of 3a polymerase activity in an in vitro polymerase assay. Two aptamers, r10/43 and r10/47, were chosen for further studies based on their ability to inhibit polymerase activity. The inhibition constants (Ki) of r10/43 and r10/47 were estimated to be 1.4 + 2.4 nM and 6.0 + 2.3 nM respectively. The affinity (Kd) of these aptamers for the 3a polymerase was estimated to be 1.3 + 0.3 nM (r10/43) and 23.5 + 6.7 nM (r10/47). The estimated inhibition and dissociation constants of these two aptamers are among the best for inhibitory aptamers of the HCV enzymes (polymerase and protease). Inhibition of HCV 3a polymerase appeared to be specific for r10/47, whilst r10/43 also had some inhibitory effect on norovirus and ??6 polymerase activity. This study is the first description of an inhibitor to the HCV subtype 3a polymerase that investigates genotypic specificity of targeted antivirals.
197

Translational control mechanisms used by the human Hepatitis B virus : an upstream open reading frame modulates expression of the pregenomic RNA

Chen, Augustine, n/a January 2007 (has links)
The human hepatitis B virus (HBV) is a small hepatotropic virus, which affects approximately 350 million chronic sufferers worldwide. It has a compact 3.2 kbp dsDNA genome encoding four major overlapping genes namely core, polymerase, surface and X required for its replication. The virus synthesises a pregenomic RNA (pgRNA) which functions both as an RNA intermediate for reverse transcription into the DNA genome and as the mRNA for the translation of the core (C) and polymerase (P) proteins. The core overlaps the polymerase gene and is translated at a 10 to 1 ratio. The polymerase gene translated from the P AUG codon is preceded by at least 4 upstream AUG codons (uAUGs), namely C AUG, C1 AUG, J AUG and C2 AUG. Various mechanisms have been implicated in the synthesis of the polymerase protein. This led to the currently accepted model which involves leaky scanning and a reinitiation mechanism in polymerase synthesis. However, multiple sequence alignment of the pgRNA revealed a short upstream open reading frame (uORF) highly conserved at the nucleotide level in all HBV subtypes and mammalian hepadnaviruses. This previously unreported uORF, designated as C0 ORF in this study is also conserved in its position and length. Past studies have either omitted this uORF in their test constructs or ignored its potential role. The C0 ORF has a conserved weak initiation context and is located within the epsilon structure within the 5' leader of the pgRNA, required for viral encapsidation. Importantly, the C0 ORF precedes and overlaps the core ORF, which may suggest an alternative model in which the core and polymerase may be translated and coordinately regulated. Fusion of the C0 ORF to luciferase showed for the first time that this uORF is translated through the detection of reporter activity (~20% of C) and also visualisation of the fusion protein via western analysis using anti-C0 and anti-luciferase antibodies. Subsequent removal of the C0 ORF implicated a role in repressing downstream core fusion protein synthesis in HepG2 cells. A similar repression was observed on J expression. To study the effect of C0 on downstream polymerase translation, a pgRNA-like DNA construct was made and subsequent mutations introduced. Mutation of the C0 AUG led to an increase in initiation at the downstream P AUG. Alteration of the existing weak initiation context to an optimal context which favours stronger initiation consistently showed a potential role for C0 ORF in facilitating reinitiation at certain downstream initiation codons including P AUG. Mutations of other uAUGs preceding the P AUG were also done to better understand their roles in regulating polymerase synthesis. The removal of the C AUG markedly increased expression from the P AUG. This study revealed other internal uAUGs in-frame to the C AUG, namely the C1 and C2 AUGs are also effectively translated, further reducing availability of translating ribosomes to downstream P AUG. Indeed the removal of the C1 and C2 AUGs led to a corresponding increase in initiation from the P AUG. Initiation at the internal J AUG was also reported and its removal showed a significant decrease in expression from the P AUG, consistent with the previous model implicating reinitiation at the P initiation site after translation of the short J ORF. The inhibitory role of the 5 uAUGs prior to the P AUG were confirmed when all were removed, giving rise to translation almost equal to that at C AUG. Taken together, these results suggest a new model in which the HBV C0 ORF plays a key role in controlling core and polymerase synthesis by repressing core translation and making available more ribosomes to downstream AUGs possibly facilitating translation reinitiation. In addition, the translation of the C0 ORF across the [epsilon] region may also preclude encapsidation, potentially acting as a switch discriminating the pgRNA template between encapsidation and translation. Therefore, the highly conserved [epsilon] region and C0 ORF present an excellent target for molecular based antiviral drugs (antisense oligonucleotides, aptamers, ribozymes) potentially providing new anti HBV drugs.
198

Translational control mechanisms used by the human Hepatitis B virus : an upstream open reading frame modulates expression of the pregenomic RNA

Chen, Augustine, n/a January 2007 (has links)
The human hepatitis B virus (HBV) is a small hepatotropic virus, which affects approximately 350 million chronic sufferers worldwide. It has a compact 3.2 kbp dsDNA genome encoding four major overlapping genes namely core, polymerase, surface and X required for its replication. The virus synthesises a pregenomic RNA (pgRNA) which functions both as an RNA intermediate for reverse transcription into the DNA genome and as the mRNA for the translation of the core (C) and polymerase (P) proteins. The core overlaps the polymerase gene and is translated at a 10 to 1 ratio. The polymerase gene translated from the P AUG codon is preceded by at least 4 upstream AUG codons (uAUGs), namely C AUG, C1 AUG, J AUG and C2 AUG. Various mechanisms have been implicated in the synthesis of the polymerase protein. This led to the currently accepted model which involves leaky scanning and a reinitiation mechanism in polymerase synthesis. However, multiple sequence alignment of the pgRNA revealed a short upstream open reading frame (uORF) highly conserved at the nucleotide level in all HBV subtypes and mammalian hepadnaviruses. This previously unreported uORF, designated as C0 ORF in this study is also conserved in its position and length. Past studies have either omitted this uORF in their test constructs or ignored its potential role. The C0 ORF has a conserved weak initiation context and is located within the epsilon structure within the 5� leader of the pgRNA, required for viral encapsidation. Importantly, the C0 ORF precedes and overlaps the core ORF, which may suggest an alternative model in which the core and polymerase may be translated and coordinately regulated. Fusion of the C0 ORF to luciferase showed for the first time that this uORF is translated through the detection of reporter activity (~20% of C) and also visualisation of the fusion protein via western analysis using anti-C0 and anti-luciferase antibodies. Subsequent removal of the C0 ORF implicated a role in repressing downstream core fusion protein synthesis in HepG2 cells. A similar repression was observed on J expression. To study the effect of C0 on downstream polymerase translation, a pgRNA-like DNA construct was made and subsequent mutations introduced. Mutation of the C0 AUG led to an increase in initiation at the downstream P AUG. Alteration of the existing weak initiation context to an optimal context which favours stronger initiation consistently showed a potential role for C0 ORF in facilitating reinitiation at certain downstream initiation codons including P AUG. Mutations of other uAUGs preceding the P AUG were also done to better understand their roles in regulating polymerase synthesis. The removal of the C AUG markedly increased expression from the P AUG. This study revealed other internal uAUGs in-frame to the C AUG, namely the C1 and C2 AUGs are also effectively translated, further reducing availability of translating ribosomes to downstream P AUG. Indeed the removal of the C1 and C2 AUGs led to a corresponding increase in initiation from the P AUG. Initiation at the internal J AUG was also reported and its removal showed a significant decrease in expression from the P AUG, consistent with the previous model implicating reinitiation at the P initiation site after translation of the short J ORF. The inhibitory role of the 5 uAUGs prior to the P AUG were confirmed when all were removed, giving rise to translation almost equal to that at C AUG. Taken together, these results suggest a new model in which the HBV C0 ORF plays a key role in controlling core and polymerase synthesis by repressing core translation and making available more ribosomes to downstream AUGs possibly facilitating translation reinitiation. In addition, the translation of the C0 ORF across the [epsilon] region may also preclude encapsidation, potentially acting as a switch discriminating the pgRNA template between encapsidation and translation. Therefore, the highly conserved [epsilon] region and C0 ORF present an excellent target for molecular based antiviral drugs (antisense oligonucleotides, aptamers, ribozymes) potentially providing new anti HBV drugs.
199

Regulation of ribonucleotide reductase analyzed by simultaneous measurement of the four enzyme activities

Hendricks, Stephen P. 12 March 1998 (has links)
The first committed step in DNA biosynthesis occurs by direct reduction of ribonucleotides. This reduction is catalyzed by ribonucleotide reductase (RNR), an enzyme which uses a unique radical mechanism to facilitate the transformation. All four DNA precursors are synthesized by a single enzyme. Therefore, an intricate pattern of regulation has evolved to insure that RNR generates the proper quantity of each deoxyribonucleotide. It is this regulation, and conditions that influence this regulation, that are the central focal points of this dissertation. The studies described in this thesis have been aided by the development of a novel RNR assay. Unlike the traditional assay, this new procedure permits the simultaneous monitoring of all four RNR activities. This four-substrate assay was used to investigate whether the four enzyme activities of RNR were differentially sensitive to inhibition by the radical scavenger, hydroxyurea. The assay results, along with the results of a technique that measured enzyme inhibition as a function of radical decay, suggest that all activities of RNR are equally inhibited by hydroxyurea. Instead of differential inhibition, it appears that the activity level of RNR determines the relative sensitivity to hydroxyurea. The effects of nucleotide effectors and substrates on the relative turnover rates of the vaccinia virus and T4 phage RNR were also investigated by use of the four-substrate assay. When physiological concentrations of the allosteric effectors and substrates were added to the reaction mixtures, both enzyme forms produced dNDPs in ratios that approximate the nucleotide composition of their respective genomes. Non-physiological nucleotide concentrations generated significantly different product profiles, indicating that RNR has evolved to function within a defined nucleotide environment. Interestingly, the substrate component of the nucleotide environment proved to be as important as the allosteric effectors in modulating the reaction rates. Although the allosteric effects of nucleoside triphosphates have been known for some time, little attention has been given to the potential role that substrates play in the regulation of RNR. The results from my research suggest that the regulation of RNR in vivo results from a complex interplay between the enzyme and its substrates, products, and allosteric effectors. / Graduation date: 1998
200

Monitoring folding pathways for large RNAs using site-directed spin-labeling techniques

Zalma, Carre Alison 25 April 2007 (has links)
The function of biomolecules is very sensitive to structure. Folding in proteins and nucleic acids is a hierarchical process progressing from primary to secondary, then tertiary, and finally, quaternary structures. RNA in its folded form performs a variety of biological activities. Obtaining intramolecular distance measurements makes it possible to generate structural models along the folding pathway that may be related to the overall function of the molecule. Distances can be measured by Site-Directed Spin-Labeling (SDSL), in which nitroxyl spin-label probes are attached and observed by EPR spectroscopy. Spin-labels can provide information concerning structure and conformational changes because they are particularly sensitive to molecular motion and interspin distances. Continuous-wave EPR spectroscopy has been commonly applied to detect and monitor nitroxide spin-label probes within biological systems. A previous published SDSL study from this laboratory investigated a 10-mer RNA duplex model system with spin-label probe succinimdyl-2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-carboxylate; however, an increased spin-labeling efficiency was observed with an isocyanate derivative of tetramethylpiperidyl-N-oxy (TEMPO). In this thesis, a 4-isocyano TEMPO spin-label probe replaced the previously used succinimdyl-2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-carboxylate in 10-mer SDSL studies. The influence of labeling with the 4-iscocyano TEMPO spin-label in a 10-mer RNA model system was investigated with thermal denaturation, Matrix Assisted Laser Desorption Time of Flight Mass Spectrometry (MALDI-TOF-MS), Electron Paramagnetic Resonance (EPR) spectroscopy, and reverse phase high performance liquid chromatography (RP-HPLC). In the 10-mer RNA duplex model system a 4-isocyano TEMPO spin-label is individually attached to one strand and two strands are annealed to measure distances. This methodology is limited to systems in which two oligonucleotides are annealed together. To circumvent this limitation and also to explore single-strand dynamics a new methodology was implemented, double spin-labeling. Double spin-labeled single-stranded RNA was investigated as a single-strand and within a duplex via MALDI-TOF-MS, EPR spectroscopy and RP-HPLC. A double spin-labeling strategy in this work will be applicable to large complex RNAs like Group I intron of Tetrahymena thermophilia.

Page generated in 0.0166 seconds