281 |
HIV-1 Gene Expression: Transcriptional Regulation and RNA Interference Studies: a DissertationChiu, Ya-Lin 10 January 2003 (has links)
Gene expression of human immunodeficiency virus type-1 (HIV-1), which causes Acquired Immunodeficiency Syndrome (AIDS), is regulated at the transcriptional level, where negative factors can block elongation that is overcome by HIV Tat protein and P-TEFb. P-TEFb, a positive elongation transcription factor with two subunits, CDK9 and Cyclin T1 (CycT1), catalyzes Tat-dependent phosphorylation of Ser-5 in the Pol II C-terminal domain (CTD), allowing production of longer mRNAs. Ser-5 phosphorylation enables the CTD to recruit mammalian mRNA capping enzyme (Mce1) and stimulate its guanylyltransferase activity. This dissertation demonstrates that stable binding of Mce1 and cap methyltransferase to template-engaged Pol II depends on CTD phosphorylation, but not on nascent RNA. Capping and methylation doesn't occur until nascent pre-mRNA become 19-22 nucleotides long. A second and novel pathway for recruiting and activating Mce1 involved direct physical interaction between the CTD, Tat and Mce1. Tat stimulated the guanylyltransferase and triphosphatase activities of Mce1, thereby enhancing the otherwise low efficiency of cotranscriptional capping of HIV mRNA. These findings imply that multiple mechanisms exist for coupling transcription elongation and mRNA processing at a checkpoint critical to HIV gene expression.
To elucidate P-TEFb's function in human (HeLa) cells, RNA interference (RNAi) was used to degrade mRNA for hCycT1 or CDK9. Down-regulation of P-TEFb expression by RNAi can be achieved without causing major toxic or lethal effects and can control Tat transactivation and HIV replication in host cells. High-density oligonucleotide arrays were used to determine the effect of P-TEFb knockdown on global gene expression. Of 44,928 human genes analyzed, 25 were down-regulated and known or likely to be involved in cell proliferation and differentiation. These results provide new insight into P-TEFb function, its potent role in early embryonic development and strong evidence that P-TEFb is a new target for developing AIDS and cancer therapies.
To fulfill the promise of RNAi for treating infectious and human genetic diseases, structural and functional mechanisms underlying RNAi in human cells were studied. The status of the 5' hydroxyl terminus of the antisense strand of short interfering RNA (siRNA) duplexes determined RNAi activity, while a 3' terminus block was tolerated in vivo. A perfect A-form helix in siRNA was not required for RNAi, but was required for antisense-target RNA duplexes. Strikingly, crosslinking siRNA duplexes with psoralen did not completely block RNAi, indicating that complete unwinding of the siRNA helix is not necessary for RNAi in vivo. These results suggest that RNA amplification by RNA-dependent RNA polymerase is not essential for RNAi in human cells.
|
282 |
Vliv způsobu indukce RNA interference na umlčování reportérového genu pro GFP u Arabidopsis thaliana / Impact of the mode of RNAi induction on silencing of the reporter GFP gene in Arabidopsis thalianaRůžičková, Adéla January 2015 (has links)
RNA interference (RNAi) is one of the key mechanisms that are involved in many biological processes such as control of plant gene expression, influence on chromatin arrangement or providing protection against invasive DNA or RNA transposons, viruses and transgenes. In plants, RNAi is triggered by double stranded RNA (dsRNA) that is cleaved by DICER LIKE (DCL) proteins to small RNAs (sRNAs). The size of these sRNAs is in range of 21 - 24 nucleotides (nt). Small RNA acts in the place of origin and they are also a mobile signal which in plants can move to a short distance through plasmodesmata and to a long distance trough phloem. sRNA and Argonaute (AGO) protein form RNA-induced silencing complex (RISC). Together, they recognize the target RNA molecule and contribute to an efficient RNAi phase which may be exhibited by gene silencing at posttranscriptional level (PTGS) or transcriptional level (TGS). The purpose of this study was to compare the effects of silencing constructs, witch in a controlled way differently trigger RNAi directed against the expression of the GFP reporter gene in the model organism Arabidopsis thaliana. Silencing constructs were placed under an inducible promoter activated by the presence of 17-β-estradiol (XVE system). They differed in the way of the dsRNA formation and in the...
|
283 |
Epigenetische und funktionelle Analyse von secreted Frizzled-related protein 1 in humanem PankreaskarzinomWehrum, Diana 25 April 2013 (has links)
Das duktale Adenokarzinom des Pankreas (PDAC) hat aufgrund seines aggressiven Wachstums, seiner frühen Metastasierung und seiner fehlenden Frühsymptome eine sehr schlechte Prognose und ist daher die vierthäufigste Krebstodesursache bei Männern und Frauen in Deutschland. Ein weiteres Charakteristikum von PDAC ist die starke desmoplas-tische Reaktion. Eine Funktion für stromale pankreatische Sternzellen (PSCs) bei der Förderung des Wachstums, der Proliferation und der Metastasierung des Tumors konnte bereits nachgewiesen werden. Für die Beantwortung der Frage, welche molekularen Ursachen einen funktionellen Zusammenhang zwischen Tumoraggressivität und Stroma-zellen herstellen könnten, wurden bereits im Vorfeld dieser Arbeit differentielle Genex-pressionsanalysen durchgeführt. Dabei fiel u.a. auf, dass das sezernierte Glykoprotein secreted Frizzled-related protein 1 (SFRP1), im Vergleich zum entsprechenden nicht-tumorigenen Pankreasgewebe, im Stroma von PDAC-Patienten transkriptionell herunterreguliert war. SFRP1 ist bereits bekannt als Tumorsuppressorgen. In den meisten Fällen wird seine Wirkung auf die Hemmung des β-Catenin-abhängigen (kanonischen) Wnt-Signalweges zurückgeführt. Es wurde bereits sehr häufig beobachtet, dass SFRP1 durch eine Hypermethylierung seiner Promotorregion in einer Vielzahl von humanen Tumoren, darunter auch PDAC sowie PDAC-Vorstufen, herunterreguliert ist. Mit dem Abschalten der SFRP1-Expression wurden erhöhte Proliferation sowie verringerte Apoptose bei den betroffenen Zellen, Merkmale des aktivierten kanonischen Wnt-Signalweges, festgestellt. SFRP1 ist jedoch auch in der Lage nichtkanonische Wnt-Signalwege zu modulieren.
Das Ziel dieser von der Deutschen Gesellschaft für Forschung geförderten Arbeit war es, die stromale SFRP1-Expression auf Proteinebene in Proben von PDAC-Patienten mit der von Patienten mit chronischer Pankreatitis zu vergleichen bzw. mit deren Überleben zu korrelieren. Ein möglicher Unterschied sollte mithilfe eines Zellkultur-modells auf einen funktionellen Effekt hin untersucht werden. Dafür sollten stabil und regulierbar SFRP1-überexprimierende Zelllinien aus PDAC- bzw. PSC-Zellen für die Einbindung in Migrationsassays etabliert werden. Für die Ergründung der Mechanismen, die zur Herunterregulierung der stromalen SFRP1-Expression führen könnten, sollte der Methylierungstatus der SFRP1-Promotorregion in PSC- sowie vergleichsweise in PDAC-Zellen mittels methylierungsspezifischer PCR und Bisulfitsequenzierung analysiert werden. Desweiteren sollten diese Zellen mit Hilfe eines Reportergenassays auf eine Mikro-RNA-bedingte Modulation der SFRP1-Expression hin untersucht werden.
Die immunhistochemische SFRP1-Färbung von PDAC-Patientenproben auf Tissue-Microarrays (TMAs) ergab eine signifikante Reduktion der stromalen SFRP1-Färbung im Vergleich zur entsprechenden Expression im Stroma von Patienten mit chronischer Pankreatitis (CP). Die Ergebnisse der differentiellen Genexpressionsanalyse konnten also auf Proteinexpressionsebene bestätigt werden. Bei der Korrelation der stromalen SFRP1-Färbung mit dem Überleben der entsprechenden Patienten mit R1-Resektionsstatus zeigte sich ein leichter Überlebensvorteil für die Patienten mit positiver SFRP1-Färbung. Bei der Analyse der SFRP1-Expression auf RNA- und Proteinebene in Zellkulturmodellen von PDAC zeigte sich, dass zwei von vier PDAC-Zelllinien sowie die PSCs und normale Pankreasgangzellen SFRP1-RNA exprimierten. Auch bei anderen untersuchten Tumor- oder murinen PDAC-Zelllinien war das Verhältnis zwischen Linien mit SFRP1-RNA und Linien ohne SFRP1-RNA eher gemischt. Keine dieser Zelllinien jedoch exprimierte SFRP1-Protein bis auf eine murine Fibroblastenzelllinie (3T3).
Um zu ergründen, wodurch die Diskrepanz zwischen SFRP1-RNA- und fehlender -Proteinexpression zustande kam, wurden Methylierungsanalysen durchgeführt. Dabei ergaben sich individuelle Methylierungsmuster für die verschiedenen DNAs, die eine fehlende Proteinexpression bei nur einem Teil der Zelllinien erklären würden. Daher wurde eine weitere Möglichkeit der Genexpressionsregulation in eukaryontischen Zellen als Ursache in Betracht gezogen, die Hemmung der Translation von SFRP1-mRNA in Protein durch miRNAs. Hierbei konnte mittels Reportergenassays nachgewiesen werden, dass miRNAs in PSCs und PDAC-Zellen eine kleine Stelle in der 3’-untranslatierten Region sowie Stellen in der kodierenden Sequenz von SFRP1 erkennen, daran binden und translational herunterregulieren konnten.
Da keine endogene Proteinexpression festgestellt werden konnte, wurden drei PDAC-Zelllinien (PANC-1, AsPC1 und MIA PaCa-2) sowie eine PSC-Zelllinie (Klon2.2) für die stabile Transfektion mit humanem SFRP1 auf einem regulierbaren Vektor ausgewählt. Mithilfe der Lipofektion gelang es jedoch nur bei MIA PaCa-2 und Klon2.2-Zellen, stabile Einzelzellklone anzuziehen, jedoch mit relativ variablen SFRP1-Expressionen und -Regulierbarkeiten. Um noch mehr PDAC-Zelllinien in funktionellen Tests untersuchen zu können, wurden alle vier Zelllinien noch einmal mit einer weiteren Gentransfermethode, der retroviralen Transduktion, in stabil SFRP1-exprimierende Zelllinien umgewandelt.
Um zu untersuchen, inwiefern das in den Patienten verlorengegangene SFRP1 das migratorische Verhalten von PDAC- und PSC-Zellen beeinflussen könnte, wurden Scratch- und Invasions- (Migrations) -Assays mit diesen Zellen durchgeführt und mit den Ergebnissen der entsprechenden Leerkontrollen verglichen. Dabei ergab sich für MIA PaCa-2 sowohl mit den durch Lipofektion als auch mit den durch retrovirale Transduktion generierten Klonen/Zelllinien ein signifikant hemmender Einfluss der SFRP1-Überexpression auf das Migrationsverhalten im Scratch-Assay. PANC-1-Zellen schienen mit Lipofektions-SFRP1-Überständen signifikant schlechter durch Membranen zu migrieren und zeigten ebenfalls eine signifikante Migrationshemmung als retroviral transduzierte Zelllinie in Scatch- und Invasionsassay mit endogener SFRP1-Expression. Für PSCs zeigte sich eine SFRP1-abhängige Migrationshemmung im Scratch-Assay und in den Invasionsassays (mit endogener SFRP1-Überexpression und mit SFRP1-Anwesenheit im Überstand), allerdings nur mit Lipofektionsklonen. Es konnte also ein hemmender Einfluss von SFRP1 auf die Migration von PDAC- und PSC-Zellen nachgewiesen werden. Dieser würde theoretisch wegfallen, wenn SFRP1, wie im Tumorstroma von PDAC-Patienten nachgewiesen, herunterreguliert werden würde. Bei der Untersuchung eines Einflusses von SFRP1 auf die Expression weiterer Gene ergab sich, dass SFRP1 bei PDAC-Zellen keine Hemmung des kanonischen Wnt-Signalweges verursacht. Vielmehr scheint seine Überexpression einen positiven Effekt auf die Expression von Mitgliedern des nichtkanonischen planaren Zellpolaritätssignalweges (PCP) zu haben.
Die Schlussfolgerung aus diesen Ergebnissen ist, dass ein Wegfall von SFRP1 im Stroma von PDAC in sehr frühen Phasen (und auch in den Tumorzellen selbst) durch miRNAs oder, im Falle der Tumorzellen, durch Hypermethylierung ausgelöst werden könnte. Sezernierte, tumorsupprimierende, parakrine Signale aus dem Stroma und autokrine Signale von den Tumorzellen selbst würden damit wegfallen und die planare Zellpolarität wäre nicht mehr aufrechterhaltbar. Damit würden sich die Polarität und die Migrationsbereitschaft der Tumorzellen so verändern, dass sie ungerichtet wandern könnten, wodurch das Risiko zur Metastasierung zunehmen könnte. Auf diese Weise könnte die stromale Herunterregulierung von SFRP1 bei der Aufrechterhaltung und Progression des PDAC eine Rolle spielen.
|
284 |
The Molecular Mechanisms Underlying the Polarized Distribution of Drosophila Dscam in Neurons: A DissertationYang, Shun-Jen 14 October 2008 (has links)
Neurons exhibit highly polarized structures, including two morphologically and functionally distinct domains, axons and dendrites. Dendrites and axons receive versus send information, and proper execution of each requires different sets of molecules. Differential distribution of membrane proteins in distinct neuronal compartments plays essential roles in neuronal functions. The major goal of my doctoral thesis was to study the molecular mechanisms that govern the differential distribution of membrane proteins in neurons, using the Drosophilalarval mushroom body (MB) as a model system.
My work was initiated by an observation of differential distribution of distinct Dscam isoforms in neurons. Dscam stands for Down Syndrome Cell Adhesion Molecule, which is a Drosophila homolog of human DSCAM. According to genomic analysis, DrosophilaDscam gene can generate more than 38,000 isoforms through alternative splicing in its exons 4, 6, 9 and 17. All Dscam isoforms share similar domain structures, with 10 immunoglobulin domains and 6 fibronectin type III repeats in the ectodomain, a single transmembrane domain and a cytoplasmic endodomain. There are two alternative exons in exon 17 (17.1 and 17.2), which encodes Dscam’s transmembrane domain. Interestingly, in ectopic expression, Dscam isoforms carrying exon 17.1 (Dscam[TM1]) can be preferentially localized to dendrites and cell bodies, while Dscam isoforms carrying exon 17.2 (Dscam[TM2]) are distributed throughout the entire neuron including axons and dendrites.
To unravel the mechanisms involved in the differential distribution of Dscam[TM1] versus Dscam[TM2], I conducted a mosaic genetic screening to identify the possible factors affecting dendritic distribution of Dscam[TM1], established an in vivoTARGET system to better distinguish the differential distribution of Dscam, identified the axonal and dendritic targeting motifs of Dscam molecules and further showed that Dscam’s differential roles in dendrites versus axons are correlated with its localization.
Several mutants affecting dendritic distribution of Dscam[TM1] have been identified using a MARCM genetic screen. Three of these mutants (Dlis1, Dmn and p24) are components of the dynein/dynactin complex. Silencing of other dynein/dynactin subunits and blocking dynein function with a dominant-negative Glued mutant also resulted in mislocalization of Dscam[TM1] from dendrites to axons. However, microtubule polarity in the mutant axons was maintained. Taken together, this was the first demonstration that the dynein/dynactin complex is involved in the polarized distribution of membrane proteins in neurons. To further examine how dynein/dynactin is involved in the dendritic distribution of Dscam[TM1], I compromised dynenin/dynactin function with dominant-negative Glued and transiently induced Dscam[TM1] expression. The results suggested that dynein/dynactin may not be directly involved in the targeting of newly synthesized Dscam[TM1] to dendrites. Instead, it plays a role in maintaining dendritic restriction of Dscam[TM1]. Notably, dynein/dynactin dysfunction did not alter distribution of another dendritic transmembrane protein Rdl (Resistant to Dieldrin), supporting involvement of diverse mechanisms in distributing distinct molecules to the dendritic membrane.
To identify the targeting motifs of Dscam, I incorporated the TARGET (Temporal and regional gene expression targeting) system into mushroom body (MB) neurons, and this allowed the demonstration of the differential distribution of Dscam[TM1] and Dscam[TM2] with more clarity than conventional overexpression techniques. Using the TARGET system, I identified an axonal targeting motif located in the cytoplasmic juxtamemebrane domain of Dscam[TM2]. This axonal targeting motif is dominant over the dendritic targeting motif located in Dscam’s ectodomain. Scanning alanine mutagenesis demonstrated that two amino acids in the axonal targeting motif were essential for Dscam’s axonal distribution. Interestingly, swapping the cytoplasmic juxtamembrane portions between TM1 and TM2 not only reversed TM1’s and TM2’s differential distribution patterns but also their functional properties in dendrites versus axons.
My thesis research also involved studying endodomain diversity of Dscam isoforms. Besides the diversity originally found in the ectodomain and transmembrane domain of Dscam, my colleagues and I further demonstrated the existence of four additional endodomain variants. These four variants are generated by skipping or retaining exon 19 or exon 23 through independent alternative splicing. Interestingly, different Dscam endodomain isoforms are expressed at different developmental stages and in different areas of the nervous system. Through isoform-specific RNA interference, we showed the differential involvement of distinct Dscam endodomains in specific neuronal morphogenetic processes. Analysis of the primary sequence of the Dscam endodomain indicated that endodomain variants may confer activation of different signaling pathways and functional roles in neuronal morphogenesis.
In Summary, my thesis work identified and characterized several previously unknown mechanisms related to the differential distribution of membrane proteins in neurons. I showed that there may be a dynein/dynactin-independent mechanism for selective transport of dendritic membrane proteins to dendrites. Second, dynein/dynactin plays a maintenance role in dendritic restriction of Dscam[TM1]. Third, different membrane proteins may require distinct combinations of mechanisms to be properly targeted and maintained in certain neuronal compartments. Further analysis of the mutants indentified from my genetic screen will definitely help to resolve the missing pieces of the puzzle. These findings provide novel mechanistic insight into the differential distribution of membrane proteins in polarized neurons.
|
285 |
Small RNA Sorting in Drosophila Produces Chemically Distinct Functional RNA-Protein Complexes: A DissertationHorwich, Michael D. 10 June 2008 (has links)
Small interfering RNAs (siRNAs), microRNAs (miRNAs), and piRNAs (piRNA) are conserved classes of small single-stranded ~21-30 nucleotide (nt) RNA guides that repress eukaryotic gene expression using distinct RNA Induced Silencing Complexes (RISCs). At its core, RISC is composed of a single-stranded small RNA guide bound to a member of the Argonaute protein family, which together bind and repress complementary target RNA. miRNAs target protein coding mRNAs—a function essential for normal development and broadly involved in pathways of human disease; small interfering RNAs (siRNA) defend against viruses, but can also be engineered to direct experimental or therapeutic gene silencing; piwi associated RNAs (piRNAs) protect germline genomes from expansion of parasitic nucleic acids such as transposons. Using the fruit fly, Drosophila melanogaster, as a model organism we seek to understand how small silencing RNAs are made and how they function.
In Drosophila, miRNAs and siRNAs are proposed to have parallel, but separate biogenesis and effector machinery. miRNA duplexes are excised from imperfectly paired hairpin precursors by Dicer1 and loaded into Ago1; siRNA duplexes are hewn from perfectly paired long dsRNA by Dicer2 and loaded into Ago2. Contrary to this model we found one miRNA, miR-277, is made by Dicer1, but partitions between Ago1 and Ago2 RISCs. These two RISCs are functionally distinct—Ago2 could silence a perfectly paired target, but not a centrally bulged target; Ago1 could silence a bulged target, but not a perfect target. This was surprising since both Ago1 and Ago2 have endonucleolytic cleavage activity necessary for perfect target cleavage in vitro. Our detailed kinetic studies suggested why—Ago2 is a robust multiple turnover enzyme, but Ago1 is not. Along with a complementary in vitro study our data supports a duplex sorting mechanism in which Diced duplexes are released, and rebind to Ago1 or Ago2 loading machinery, regardless of which Dicer produced them. This allows structural information embedded in small RNA duplexes to direct small RNA loading into Ago1 and/or Ago2, resulting in distinct regulatory outputs.
Small RNA sorting also has chemical consequences for the small RNA guide. Although siRNAs were presumed to have the signature 2′, 3′ hydroxyl ends left by Dicer, we found that small RNAs loaded into Ago2 or Piwi proteins, but not Ago1, are modified at their 3´ ends by the RNA 2´-O-methyltransferase DmHen1. In plants Hen1 modifies the 3´ ends all small RNAs duplexs, protecting and stabilizing them. Implying a similar function in flies, piRNAs are smaller, less abundant, and their function is perturbed in hen1 mutants. But unlike plants, small RNAs are modified as single-strands in RISC rather than as duplexes. This nicely explains why the dsRNA binding domain in plant Hen1 was discarded in animals, and why both dsRNA derived siRNAs and ssRNA derived piRNAs are modified. The recent discovery that both piRNAs and siRNAs target transposons links terminal modification and transposon silencing, suggesting that it is specialized for this purpose.
|
286 |
Dissecting Small RNA Loading Pathway in <em>Drosophila melanogaster</em>: A DissertationDu, Tingting 28 January 2008 (has links)
In the preceding chapters, I have discussed my doctoral research on studying the siRNA loading pathway in Drosophila using both biochemical and genetic approaches. We established a gel shift system to identify the intermediate complexes formed during siRNA loading. We detected at least three complexes, named complex B, RISC loading complex (RLC) and RISC. Using kinetic modeling, we determined that the siRNA enters complex B and RLC early during assembly when it remains double-stranded, and then matures in RISC to generate Argonaute bearing only the single-stranded guide. We further characterized the three complexes. We showed that complex B comprises Dcr-1 and Loqs, while both RLC and RISC contain Dcr-2 and R2D2. Our study suggests that the Dcr-2/R2D2 heterodimer plays a central role in RISC assembly. We observed that Dcr-1/Loqs, which function together to process pre-miRNA into mature miRNA, were also involved in siRNA loading. This was surprising, because it has been proposed that the RNAi pathway and miRNA pathway are separate and parallel, with each using a unique set of proteins to produce small RNAs, to assemble functional RNA-guided enzyme complexes, and to regulate target mRNAs. We further examined the molecular function of Dcr-1/Loqs in RNAi pathway. Our data suggest that, in vivo and in vitro, the Dcr-1/Loqs complex binds to siRNA. In vitro, the binding of the Dcr-1/Loqs complex to siRNA is the earliest detectable step in siRNA-triggered Ago2-RISC assembly. Futhermore, the binding of Dcr-1/Loqs to siRNA appears to facilitate dsRNA dicing by Dcr-2/R2D2, because the dicing activity is much lower in loqslysate than in wild type.
Long inverted repeat (IR) triggered white silencing in fly eyes is an example of endogenous RNAi. Consistent with our finding that Dcr-1/Loqs function to load siRNA, less white siRNA accumulates in loqs mutant eyes compared to wild type. As a result, loqs mutants are partially defective in IR trigged whitesilencing. Our data suggest considerable functional and genetic overlap between the miRNA and siRNA pathways, with the two sharing key components previously thought to be confined to just one of the two pathways.
Based on our study on siRNA loading pathway, we also elucidated the molecular function of Armitage (Armi) protein in RNAi. We showed that armi is required for RNAi. Lysates from armi mutant ovaries are defective for RNAi in vitro. Native gel analysis of protein-siRNA complexes suggests that armi mutants support early steps in the RNAi pathway, i.e., the formation of complex B and RLC, but are defective in the production of the RISC.
|
287 |
Roles of Cellular RNA-Dependent RNA Polymerases in Endogenous Small RNA Pathways in Caenorhabditis elegans: A DissertationVasale, Jessica J. 14 June 2010 (has links)
The RNA interference (RNAi) pathway in Caenorhabditis elegans is a two-step, small RNA-mediated silencing pathway. Unlike in other organisms, Dicer processing of double-stranded RNA into small interfering (si) RNAs is not sufficient in worms to induce gene silencing. The activity of cellular RNA-dependent RNA polymerase (RdRP) is necessary to synthesize a secondary pool of siRNAs, which interact with a unique class of Argonaute proteins to form the functional effector complexes that mediate silencing. The aims of this thesis were to: 1) characterize the role of RdRP family members in endogenous small RNA biogenesis; 2) identify the Argonaute proteins that interact with RdRP-dependent small RNAs; and 3) investigate the biological function of RdRP-dependent small RNA pathways in C. elegans.
In this thesis, I describe genetic, deep sequencing, and molecular studies, which identify 22G-RNAs as the most abundant class of endogenous small RNA in C. elegans. The 22G-RNAs resemble RdRP-dependent secondary siRNAs produced during exogenous RNAi, in that they possess a triphosphorylated 5’ guanine residue and exhibit a remarkable strand bias at target loci. Indeed, I show that 22G-RNAs are dependent on the activity of the RdRPs RRF-1 and EGO-1 and function in multiple distinct endogenous small RNA pathways. Interestingly, I have found that RRF-1 and EGO-1 function redundantly in the germline to generate 22G-RNAs that are dependent on and interact with members of an expanded family of worm-specific Argonaute (WAGO) proteins. The WAGO/22G-RNA pathway appears to be a transcriptome surveillance pathway that silences coding genes, pseudogenes, transposons, and non-annotated, or cryptic, transcripts. In contrast, I have found that EGO-1 alone is required for the biogenesis of a distinct class of 22G-RNAs that interact with the Argonaute CSR-1. Surprisingly, the CSR-1/22G-RNA pathway does not appear to silence its targets transcripts. Instead, the CSR-1/22G-RNA pathway is essential for the proper assembly of holocentric kinetochores and chromosome segregation.
Lastly, I show that a third endogenous small RNA pathway, the ERI pathway, is a two-step silencing pathway that requires the sequential activity of distinct RdRPs and Argonautes. In the first step of this pathway, the RdRP, RRF- 3, is required for the biogenesis of 26G-RNAs that associate with the Argonaute, ERGO-1. In the second step, RRF-1 and EGO-1 generate 22G-RNAs that associate with the WAGO Argonautes.
This work demonstrates how several C. elegans small RNAs pathways utilize RdRPs to generate abundant populations of small RNAs. These distinct categories of small RNAs function together with specific Argonaute proteins to affect gene expression, to play essential roles in development, and in the maintenance of genome and transcriptome integrity.
|
288 |
Molecular Landscape of Induced Reprogramming: A DissertationYang, Chao-Shun 26 February 2014 (has links)
Recent breakthroughs in creating induced pluripotent stem cells (iPS cells) provide alternative means to obtain embryonic stem (ES) cell-like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c-Myc or Nanog/Lin28) into somatic cells. However, the molecular basis of reprogramming is largely unknown. To address this question, we employed microRNAs, small molecules, and conducted genome-wide RNAi screen, to investigate the regulatory mechanisms of reprogramming.
First we showed that depleting miR-21 and miR-29a enhances reprogramming in mouse embryonic fibroblasts (MEFs). We also showed that p53 and ERK1/2 pathways are regulated by miR-21 and miR-29a and function in reprogramming.
Second, we showed that computational chemical biology combined with genomic analysis can be used to identify small molecules regulating reprogramming. We discovered that the NSAID Nabumetone and the anti-cancer drug OHTM could replace Sox2 during reprogramming. Nabumetone could also replace c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPS cells.
To identify the cell-fate determinants during reprogramming, we integrated a genome-wide RNAi screen with transcriptome analysis to dissect the molecular requirements in reprogramming. We found that extensive interactions of embryonic stem cell core circuitry regulators are established in mature iPS cells, including Utf1, Nr6a1, Tdgf1, Gsc, Fgf10, T, Chrd, Dppa3, Fgf17, Eomes, Foxa2. Remarkably, genes with non-differential change play the most critical roles in the transitions of reprogramming. Functional validation showed that some genes act as essential or barrier roles to reprogramming. We also identified several genes required for maintaining ES cell properties. Altogether, our results demonstrate the significance of miRNA function in regulating multiple signaling networks involved in reprogramming. And our work further advanced the reprogramming field by identifying several new key modulators.
|
289 |
Unveiling Molecular Mechanisms of piRNA Pathway from Small Signals in Big Data: A DissertationWang, Wei 01 October 2015 (has links)
PIWI-interacting RNAs (piRNA) are a group of 23–35 nucleotide (nt) short RNAs that protect animal gonads from transposon activities. In Drosophila germ line, piRNAs can be categorized into two different categories— primary and secondary piRNAs— based on their origins. Primary piRNAs, generated from transcripts of specific genomic regions called piRNA clusters, which are enriched in transposon fragments that are unlikely to retain transposition activity. The transcription and maturation of primary piRNAs from those cluster transcripts are poorly understood. After being produced, a group of primary piRNAs associates Piwi proteins and directs them to repress transposons at the transcriptional level in the nucleus. Other than their direct role in repressing transposons, primary piRNAs can also initiate the production of secondary piRNA. piRNAs with such function are loaded in a second PIWI protein named Aubergine (Aub). Similar to Piwi, Aub is guided by piRNAs to identify its targets through base-pairing. Differently, Aub functions in the cytoplasm by cleaving transposon mRNAs. The 5' cleavage products are not degraded but loaded into the third PIWI protein Argonaute3 (Ago3). It is believed that an unidentified nuclease trims the 3' ends of those cleavage products to 23–29 nt, becoming mature piRNAs remained in Ago3. Such piRNAs whose 5' ends are generated by another PIWI protein are named secondary piRNAs. Intriguingly, secondary piRNAs loaded into Ago3 also cleave transposon mRNA or piRNA cluster transcripts and produce more secondary piRNAs loaded into Aub. This reciprocal feed-forward loop, named the “Ping-Pong cycle”, amplified piRNA abundance.
By dissecting and analyzing data from large-scale deep sequencing of piRNAs and transposon transcripts, my dissertation research elucidates the biogenesis of germline piRNAs in Drosophila.
How primary piRNAs are processed into mature piRNAs remains enigmatic. I discover that primary piRNA signal on the genome display a fixed periodicity of ~26 nt. Such phasing depends on Zucchini, Armitage and some other primary piRNA pathway components. Further analysis suggests that secondary piRNAs bound to Ago3 can initiate phased primary piRNA production from cleaved transposon RNAs. The first ~26 nt becomes a secondary piRNA that bind Aub while the subsequent piRNAs bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. This discovery adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence. We further find that most Piwi-associated piRNAs are generated from the cleavage products of Ago3, instead of being processed from piRNA cluster transcripts as the previous model suggests. The cardinal function of Ago3 is to produce antisense piRNAs that direct transcriptional silencing by Piwi, rather to make piRNAs that guide post-transcriptional silencing by Aub. Although Ago3 slicing is required to efficiently trigger phased piRNA production, an alternative, slicing-independent pathway suffices to generate Piwi-bound piRNAs that repress transcription of a subset of transposon families. The alternative pathway may help flies silence newly acquired transposons for which they lack extensively complementary piRNAs.
The Ping-Pong model depicts that first ten nucleotides of Aub-bound piRNAs are complementary to the first ten nt of Ago3-bound piRNAs. Supporting this view, piRNAs bound to Aub typically begin with Uridine (1U), while piRNAs bound to Ago3 often have adenine at position 10 (10A). Furthermore, the majority of Ping-Pong piRNAs form this 1U:10A pair. The Ping-Pong model proposes that the 10A is a consequence of 1U. By statistically quantifying those target piRNAs not paired to g1U, we discover that 10A is not directly caused by 1U. Instead, fly Aub as well as its homologs, Siwi in silkmoth and MILI in mice, have an intrinsic preference for adenine at the t1 position of their target RNAs. On the other hand, this t1A (and g10A after loading) piRNA directly give rise to 1U piRNA in the next Ping-Pong cycle, maximizing the affinity between piRNAs and PIWI proteins.
|
290 |
Synthetic Gene Complementation to Determine off-Target SilencingKumar, Dhirendra R. 01 January 2015 (has links)
RNA interference (RNAi) is a conserved mechanism in a wide range of eukaryotes. Introduction of synthetic dsRNA could specifically target suppression of a gene or could result in off-target silencing of another gene due to sequence similarity. To verify if the observed phenotype in an RNAi transgenic line is due to silencing of a specific gene or if it is due to another nontarget gene, a synthetic gene complementation approach could be used. Synthetic gene complementation described in this method uses the technology of synthesizing a variant of a native gene (used in RNAi silencing) to maximize the difference in DNA sequences while coding for the exact same amino acids as the original native gene. This is achieved through the use of alternate codons. The new variant gene is expressed in the original RNAi transgenic lines and analyzed for complementation of the RNAi phenotype. Complementation of the RNAi-induced phenotype will indicate gene-specific silencing and not off-target silencing.
|
Page generated in 0.0192 seconds