• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 39
  • 26
  • 21
  • 13
  • 10
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 308
  • 308
  • 68
  • 47
  • 44
  • 39
  • 37
  • 37
  • 36
  • 30
  • 30
  • 29
  • 29
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Identification and Characterization of MicroRNA Modulators in Caenorhabditis Elegans: A Dissertation

Ren, Zhiji 26 February 2016 (has links)
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that posttranscriptionally regulate gene expression primarily through binding to the 3’ untranslated region (3’UTR) of target mRNAs, and are known to play important roles in various developmental and physiological processes. The work presented in this thesis was centered on understanding how Caenorhabditis elegans miRNAs are modulated by genetic, environmental, or physiological factors and how these small RNAs function to maintain the robustness of developmental processes under stressful conditions. To identify modulators of the miRNA pathway, I developed sensitized genetic backgrounds that consist of a panel of miRNA gene mutants and miRNA biogenesis factor mutants with partially penetrant phenotypes. First, I found that upon infection of Caenorhabditis elegans with Pseudomonas aeruginosa, an opportunistic pathogen of diverse plants and animals, let-7 family miRNAs are engaged in reciprocal regulatory interactions with the p38 MAPK innate immune pathway to maintain robust developmental timing despite the stress of pathogen infection. These let-7 family miRNAs, along with other developmental timing regulators, are also integrated into innate immune regulatory networks to modulate immune responses. Next, I demonstrated that loss-of-function mutations of Staufen (stau-1), a double-stranded RNA-binding protein, increase miRNA activity for several miRNA families, and this negative modulation of Staufen on miRNA activity acts downstream of miRNA biogenesis, possibly by competing with miRNAs for binding to target mRNA 3’UTRs. In summary, these studies provide a better understanding on how miRNAs are modulated by various environmental and cellular components, and further support the role of the miRNA pathway in conferring robustness to developmental processes under these perturbations.
172

Investigating Cancer Molecular Genetics using Genome-wide RNA Interference Screens: A Dissertation

Serra, Ryan W. 17 June 2013 (has links)
The development of RNAi based technologies has given researchers the tools to interrogate processes as diverse as cancer biology, metabolism and organ development. Here I employ genome-wide shRNA screens to discover the genes involved in two different processes in carcinogenesis, oncogene-induced senescence [OIS] and epigenetic silencing of tumor suppressor genes [TSGs]. OIS is a poorly studied yet significant tumor suppressing mechanism in normal cells where they enter cell cycle arrest [senescence] or programmed cell death [apoptosis] in the presence of an activated oncogene. Here I employ a genomewide shRNA screen and identify a secreted protein, IGFBP7, that induces senescence and apoptosis in melanocytes upon introduction of the oncogene BRAFV600E. Expression of BRAFV600E in primary cells leads to synthesis and secretion of IGFBP7, which acts through autocrine/paracrine pathways to inhibit BRAF-MEK-ERK signaling and induce senescence and apoptosis. Apoptosis results from IGFBP7-mediated upregulation of BNIP3L, a proapoptotic BCL2 family protein. Recombinant IGFBP7 has potent pro-apoptotic and anti-tumor activity in mouse xenograft models using BRAFV600E-postive melanoma cell lines. Finally, IGFBP7 is epigenetically silenced in human melanoma samples suggesting IGFBP7 expression is a key barrier to melanoma formation. Next I investigated the factors involved in epigenetic silencing in cancer. The TSG p14ARFis inactivated in a wide range of cancers by promoter hypermethylation through unknown mechanisms. To discover p14ARF epigenetic silencing factors, I performed a genome-wide shRNA screen and identified ZNF304, a zinc finger transcription factor that contains a Krüppel-associated box [KRAB] repressor domain. I show that ZNF304 binds to the p14ARF promoter and recruits a KRAB co-repressor complex containing KAP1, SETDB1 and DNMT1 for silencing. We find oncogenic RAS signaling to promote the silencing of p14ARF by USP28-mediated stabilization of ZNF304. In addition I find ZNF304 to be overexpressed in human colorectal cancers and responsible for hypermethylation of over 50 TSGs known as Group 2 CIMP marker genes. My findings establish ZNF304 as a novel oncogene that directs epigenetic silencing and facilitates tumorigenicity in colorectal cancer.
173

piRNA Biogenesis and Transposon Silencing in Drosophila: A Dissertation

Zhang, Zhao 06 November 2013 (has links)
piRNAs guide PIWI proteins to silence transposons in animal germ cells. In Drosophila, the heterochromatic piRNA clusters transcribe piRNA precursors to be transported into nuage, a perinuclear structure for piRNA production and transposon silencing. At nuage, reciprocal cycles of piRNA-directed RNA cleavage—catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3) in Drosophila—destroy the sense transposon mRNA and expand the population of antisense piRNAs in response to transposon expression, a process called the Ping-Pong cycle. Heterotypic Ping-Pong between Aub and Ago3 ensures that antisense piRNAs predominate. My thesis research mainly focuses on two fundamental questions about the piRNA production: How does the germ cell differentiate piRNA precursor from mRNAs for piRNA biogenesis? And what is the mechanism to impose Aub Ping-Pong with Ago3? For the first question, we show that the HP1 homolog protein Rhino marks the piRNA cluster regions in the genome for piRNA biogenesis. Rhino seems to anchor a nuclear complex that suppresses cluster transcript splicing, which may differentiate piRNA precursors from mature mRNAs. Moreover, LacI::Rhino fusion protein binding suppresses splicing of a reporter transgene and is sufficient to trigger de novo piRNA production from a trans combination of sense and antisense transgenes. For the second question, we show that Qin, a new piRNA pathway factor contains both E3 ligase and Tudor domains, colocalizes with Aub and Ago3 in nuage, enforces heterotypic Ping- Pong between Aub and Ago3. Loss of qinleads to less Ago3 binding to Aub, futile Aub:Aub homotypic Ping-Pong prevails, antisense piRNAs decrease, many families of mobile genetic elements are reactivated, DNA damage accumulates in the germ cells and flies are sterile.
174

Characterization of sterility and germline defects caused by <i>Smed-boule</i> RNA-interference

Steiner, Jessica Kathryne 01 June 2016 (has links)
No description available.
175

Evaluation of Anion Transporters as Potential Target Sites for Insect and Nematode Control: Toxicological, Electrophysiological, and Molecular Studies

Boina, Dhana Raj 31 January 2008 (has links)
In this study, four anion transporter (AT) blockers, DIDS (4, 4′-diisothiocyanatostilbene-2, 2′-disulfonic acid), 9-AC (anthracene-9-carboxylic acid), NPPB (5-nitro-2-(3-phenylpropylamino) benzoic acid), and IAA-94 (indanyloxy acetic acid) were selected to evaluate ATs as potential target sites for insect and nematode control. All the AT blockers showed slowly developing toxicity against second-stage larvae of <i>Meloidogyne incognita</i> (Kofoid and White 1919) Chitwood 1949 and adults of <i>Caenorhabditis elegans</i> Maupas 1900 but not against third-stage larvae of <i>Heterorhabditis bacteriophora</i> Poinar 1975 even at 200 ppm. Symptoms of AT blocker toxicity observed in <i>C. elegans</i> adults were increased pharyngeal muscle contractions and decreased locomotion. Exposure of <i>C. elegans</i> as fourth-stage larvae to double-stranded RNA (dsRNA) of <i>ceclc-1</i> and <i>ceclc-2</i> (VGCC genes coding for CeClC-1 and CeClC-2, respectively) either alone or together for 24 h decreased their expression in F1 progeny in a time-dependent manner. Reduction in expression of <i>ceclc-2</i> alone or together with <i>ceclc-1</i> significantly increased pharyngeal contractions and decreased locomotion in significantly higher percentage of F1 progeny. The above findings suggested AT blockers nematicidal activity primarily comes from inhibition of CeClC-2 channels, while inhibition of CeClC-1 channels may enhance this activity. All the AT blockers showed slowly developing toxicity against adults of a susceptible strain (Oregon-R) of <i>Drosophila melanogaster</i> Meigen 1830, while DIDS, was equally toxic to dieldrin-resistant rdl flies. All AT blockers, except 9-AC, at 100 µM showed significant excitatory effect on desheathed central nervous system (CNS) of third-instar larvae of <i>Drosophila</i>, while DIDS showed a modest excitatory effect on ascending peripheral nerves. Feeding adult flies on 10% sugar solution mixed with 100 ppm of DIDS for 6 h decreased the midgut pH by 2 units approximately. All the AT blockers inhibited the growth of larvae (in weight), increased the developmental time, and decreased survival when <i>Ostrinia nubilalis</i> (Hübner 1796) second-instar larvae were fed for seven days. All the AT blockers decreased the midgut alkalinity and inhibited chloride ion transport from midgut lumen into epithelia in fifth-instar larvae when fed for 3 h on treated diet. Positive correlations observed among growth, midgut alkalinity, and midgut chloride transport in AT blocker-fed larvae suggested that inhibition of chloride/bicarbonate exchangers by AT blockers may have contributed to midgut alkalinity decrease affecting the digestion and resulting in observed lethal and sublethal effects. / Ph. D.
176

Parallel RNA interference screens identify EGFR activation as an escape mechanism in FGFR3-mutant cancer

Herrera-Abreu, M.T., Pearson, A., Campbell, J., Shnyder, Steven, Knowles, M.A., Ashworth, A., Turner, N.C. January 2013 (has links)
No / Activation of fibroblast growth factor receptors (FGFR) is a common oncogenic event. Little is known about the determinants of sensitivity to FGFR inhibition and how these may vary between different oncogenic FGFRs. Using parallel RNA interference (RNAi) genetic screens, we show that the EGF receptor (EGFR) limits sensitivity to FGFR inhibition in FGFR3-mutant and -translocated cell lines, but not in other FGFR-driven cell lines. We also identify two distinct mechanisms through which EGFR limits sensitivity. In partially FGFR3-dependent lines, inhibition of FGFR3 results in transient downregulation of mitogen-activated protein kinase signaling that is rescued by rapid upregulation of EGFR signaling. In cell lines that are intrinsically resistant to FGFR inhibition, EGFR dominates signaling via repression of FGFR3, with EGFR inhibition rescued by delayed upregulation of FGFR3 expression. Importantly, combinations of FGFR and EGFR inhibitors overcome these resistance mechanisms in vitro and in vivo. Our results illustrate the power of parallel RNAi screens in identifying common resistance mechanisms to targeted therapies. SIGNIFICANCE: Our data identify a novel therapeutic approach to the treatment of FGFR3-mutant cancer, emphasizing the potential of combination approaches targeting both FGFR3 and EGFR. Our data extend the role of EGFR in mediating resistance to inhibitors targeting a mutant oncogene, showing that EGFR signaling can repress mutant FGFR3 to induce intrinsic resistance to FGFR targeting.
177

Characterization of chitin synthase and chitinase gene families from the African malaria mosquito

Zhang, Xin January 1900 (has links)
Doctor of Philosophy / Department of Entomology / Kun Yan Zhu / Chitin metabolism represents an attractive target site for combating insect pests as insect growth and development are strictly dependent on precisely toned chitin synthesis and degradation and this process is absent in humans and other vertebrates. However, current understanding on this process and the involved enzymes is rather limited in insects. In this study, two chitin synthase genes (AgCHS1 and AgCHS2 or AgCHSA and AgCHSB), and 20 chitinase and chitinase-like genes (groups I-VIII) presumably encoding the enzymes for chitin biosynthesis and degradation, respectively, were identified and characterized in African malaria mosquito, Anopheles gambiae. Immunohistochemistry analysis and developmental stage- and tissue-dependent transcript profiling by using reverse transcription PCR, real-time quantitative PCR, and in situ hybridization revealed new information on these genes. Current understanding on chitin synthases is extended by the expression profiles such as the localization of AgCHS1 and AgCHS2 transcripts in eggs, AgCHS2 transcripts in the posterior larval midgut, AgCHS1 and AgCHS2 proteins in the compound eyes, and AgCHS2 enzyme in pupal inter-segments. Chitinase and chitinase-like genes are highly diverse in their gene structure, domain organization, and stage- and tissue-specific expression patterns. Most of these genes were expressed in several stages. However, some genes are stage- and tissue-specific such as AgCht8 mainly in pupal and adult stages, AgCht2 and AgCht12 specifically in foregut, AgCht13 exclusively in midgut. Functional analysis of each chitin synthase gene was conducted by using the chitosan/dsRNA nanoparticle-based RNA interference (RNAi) through larval feeding. The repression of the AgCHS1 transcripts which are predominantly expressed in carcass initiated from the mosquito larval feeding of dsRNA suggests the systemic nature of RNAi in mosquito larvae. In addition, silencing of AgCHS1 increased larval susceptibilities to diflubenzuron, whereas silencing of AgCHS2 enhanced the peritrophic matrix disruption and thus increased larval susceptibilities to calcofluor white or dithiothreitol. Furthermore, a non-radioactive method was adapted and optimized to examine the chitin synthase activity in mosquitoes. By using this method, diflubenzuron and nikkomycin Z show limited in vitro inhibition on chitin synthase at high concentration in cell free system, whereas no in vivo inhibition was observed.
178

RAD21 Cooperates with Pluripotency Transcription Factors in the Maintenance of Embryonic Stem Cell Identity

Buchholz, Frank, Nitzsche, Anja, Paszkowski-Rogacz, Maciej, Matarese, Filomena, Janssen-Megens, Eva M., Hubner, Nina C., Schulz, Herbert, de Vries, Ingrid, Ding, Li, Huebner, Norbert, Mann, Matthias, Stunnenberg, Hendrik G. 18 January 2016 (has links) (PDF)
For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21 - pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program.
179

Secretion and Signaling Activities of Lipoprotein-Associated Hedgehog and Non-Sterol-Modified Hedgehog in Flies and Mammals

Palm, Wilhelm, Swierczynska, Marta M., Kumari, Veena, Ehrhart-Bornstein, Monika, Bornstein, Stefan R., Eaton, Suzanne 10 December 2015 (has links) (PDF)
Hedgehog (Hh) proteins control animal development and tissue homeostasis. They activate gene expression by regulating processing, stability, and activation of Gli/Cubitus interruptus (Ci) transcription factors. Hh proteins are secreted and spread through tissue, despite becoming covalently linked to sterol during processing. Multiple mechanisms have been proposed to release Hh proteins in distinct forms; in Drosophila, lipoproteins facilitate long-range Hh mobilization but also contain lipids that repress the pathway. Here, we show that mammalian lipoproteins have conserved roles in Sonic Hedgehog (Shh) release and pathway repression. We demonstrate that lipoprotein-associated forms of Hh and Shh specifically block lipoprotein-mediated pathway inhibition. We also identify a second conserved release form that is not sterol-modified and can be released independently of lipoproteins (Hh-N*/Shh-N*). Lipoprotein-associated Hh/Shh and Hh-N*/Shh-N* have complementary and synergistic functions. In Drosophila wing imaginal discs, lipoprotein-associated Hh increases the amount of full-length Ci, but is insufficient for target gene activation. However, small amounts of non-sterol-modified Hh synergize with lipoprotein-associated Hh to fully activate the pathway and allow target gene expression. The existence of Hh secretion forms with distinct signaling activities suggests a novel mechanism for generating a diversity of Hh responses.
180

Membrane Invaginations Reveal Cortical Sites that Pull on Mitotic Spindles in One-Cell C. elegans Embryos

Redemann, Stefanie, Pecreaux, Jacques, Goehring, Nathan W., Khairy, Khaled, Stelzer, Ernst H. K., Hyman, Anthony A., Howard, Jonathon 09 December 2015 (has links) (PDF)
Asymmetric positioning of the mitotic spindle in C. elegans embryos is mediated by force-generating complexes that are anchored at the plasma membrane and that pull on microtubules growing out from the spindle poles. Although asymmetric distribution of the force generators is thought to underlie asymmetric positioning of the spindle, the number and location of the force generators has not been well defined. In particular, it has not been possible to visualize individual force generating events at the cortex. We discovered that perturbation of the acto-myosin cortex leads to the formation of long membrane invaginations that are pulled from the plasma membrane toward the spindle poles. Several lines of evidence show that the invaginations, which also occur in unperturbed embryos though at lower frequency, are pulled by the same force generators responsible for spindle positioning. Thus, the invaginations serve as a tool to localize the sites of force generation at the cortex and allow us to estimate a lower limit on the number of cortical force generators within the cell.

Page generated in 0.1347 seconds