• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytic Combinatorics Applied to RNA Structures

Burris, Christina Suzann 09 July 2018 (has links)
In recent years it has been shown that the folding pattern of an RNA molecule plays an important role in its function, likened to a lock and key system. γ-structures are a subset of RNA pseudoknot structures filtered by topological genus that lend themselves nicely to combinatorial analysis. Namely, the coefficients of their generating function can be approximated for large n. This paper is an investigation into the length-spectrum of the longest block in random γ-structures. We prove that the expected length of the longest block is on the order n - O(n^1/2). We further compare these results with a similar analysis of the length-spectrum of rainbows in RNA secondary structures, found in Li and Reidys (2018). It turns out that the expected length of the longest block for γ-structures is on the order the same as the expected length of rainbows in secondary structures. / Master of Science / Ribonucleic acid (RNA), similar in composition to well-known DNA, plays a myriad of roles within the cell. The major distinction between DNA and RNA is the nature of the nucleotide pairings. RNA is single stranded, to mean that its nucleotides are paired with one another (as opposed to a unique complementary strand). Consequently, RNA exhibits a knotted 3D structure. These diverse structures (folding patterns) have been shown to play important roles in RNA function, likened to a lock and key system. Given the cost of gathering data on folding patterns, little is known about exactly how structure and function are related. The work presented centers around building the mathematical framework of RNA structures in an effort to guide technology and further scientific discovery. We provide insight into the prevalence of certain important folding patterns.
2

Role of RNA structures in the initiation of Rous sarcoma virus reverse transcription

Aiyar, Ashok Anantharaman January 1994 (has links)
No description available.
3

Modeling RNA folding

Hofacker, Ivo L., Stadler, Peter F. 04 February 2019 (has links)
In recent years it has become evident that functional RNAs in living organisms are not just curious remnants from a primoridal RNA world but an ubiquitous phenomenon complementing protein enzyme based activity. Functional RNAs, just like proteins, depend in many cases upon their well-defined and evolutionarily conserved three-dimensional structure. In contrast to protein folds, however, RNA molecules have a biophysically important coarse-grained representation: their secondary structure. At this level of resolution at least, RNA structures can be efficiently predicted given only the sequence information. As a consequence, computational studies of RNA routinely incorporate structural information explicitly. RNA secondary structure prediction has proven useful in diverse fields ranging from theoretical models of sequence evolution and biopolymer folding, to genome analysis and even the design biotechnologically or pharmaceutically useful molecules.
4

Le rôle de la région variable du 3’ UTR dans la réplication du virus de l’hépatite C

Jaatoul, Sally 04 1900 (has links)
Mémoire en recherche subventionné par le Conseil de recherche en sciences naturelles et en génie du Canada (CRSNG) / Le génome du virus de l’hépatite C (VHC), membre des Flaviviridae, est constitué d’un ARN monocaténaire linéaire de polarité positive, et contient un seul cadre de lecture ouvert flanqué par deux régions non traduites désignées 5’UTR et 3’UTR. Ces régions contiennent des éléments structurés qui sont importants pour la régulation des processus de traduction et de réplication virale. Mon projet de recherche vise le 3’UTR. Celui-ci a une structure tripartite composée d’une région variable (VR), une région poly (U/UC) et une région X. Notre laboratoire a identifié une séquence VR qui forme une structure duplexe avec une séquence distale située dans le NS5B. Considérant que le gène NS5B code pour la polymérase virale, et que la 3’UTR est impliquée dans la réplication virale, nous postulons que ce duplex pourrait contrôler le niveau de synthèse de l'ARN du VHC. Afin de tester cette hypothèse, nous avons construit des mutants individuels des séquences VR et NS5B du VHC 1b afin d’empêcher la formation du duplex, ainsi qu’un mutant complémentaire aux deux sites permettant la reconstitution du duplex. L’ARN provenant de ces constructions a été synthétisé in vitro et transfecté dans les cellules Huh7.5. Au 9e jour de culture, l’ARN a été extrait des cultures, et la technique RT-qPCR a été ensuite utilisée afin de quantifier et comparer les niveaux d’ARN viral provenant des cultures transfectées avec les mutants versus celles transfectées avec le virus parental. Les résultats obtenus montrent une augmentation de 5.3X et 3.4X, respectivement, entre les niveaux d’ARN viral produits de cultures transfectées avec le virus muté dans les régions 3’UTR-VR et NS5B, comparé au virus parental. Cependant, l’ARN viral obtenu suite à la reconstitution des deux sites complémentaires montre une augmentation de 2.6X. Malgré que la différence entre les niveaux d’ARN des virus mutants ne soit pas statistiquement significative lorsqu’on les compare avec le niveau d’ARN généré par le virus parental, la tendance suggère que la fonction des séquences appariées serait de moduler à la baisse la synthèse de l’ARN viral. Il sera nécessaire de poursuivre davantage ce travail afin de mieux comprendre le rôle de la structure duplexe VR-NS5B sur la réplication du VHC. / The hepatitis C virus (HCV), a member of the Flaviviridae, contains a single (+) strand linear RNA genome which incorporates one long open reading frame flanked by two untranslated regions known as the 5’UTR and 3’UTR. These regions contain structures known to function in the regulation of HCV translation and replication. The 3’UTR is the focus of this research project. Its tripartite structure consists of a variable region (VR), a poly (U/UC) region and the X-tail. Our laboratory recently identified a VR sequence forming a duplex structure with a distal sequence located in the NS5B gene. Because NS5B encodes the viral polymerase, and seeing that the 3’UTR is involved in viral replication, we postulated that this duplex may function in controlling the level of HCV RNA replication. To test this hypothesis, we constructed HCV 1b mutants in the respective VR and NS5B annealing sequences to disrupt complementarity and prevent duplex formation. We also created a mutant with complementary mutations at both sites to reconstitute the duplex. RNA from these constructs was synthesized in vitro and transfected into Huh7.5 cells. Following a 9-day incubation period, RNA from all transfected cultures was harvested and HCV RNA was quantified by RT-qPCR. The data indicate an increase of 5.3X and 3.4X for HCV viral RNA harvested from cultures with disrupted 3’UTR-VR and NS5B, respectively, relative to wild-type HCV 1b, whereas the reconstituted HCV construct yielded a 2.6X increase in viral RNA. While these figures do not reach statistical significance, they suggest that the duplex structure modulates HCV replication downward. Further pursuit of this work is necessary to better elucidate the role of the VR-NS5B duplex structure on HCV replication.
5

Evolutionary investigation of group I introns in nuclear ribosomal internal transcribed spacers in Neoselachii

Cooper, Lizette 29 November 2018 (has links)
No description available.
6

Function prediction of transcription start site associated RNAs (TSSaRNAs) in Halobacterium salinarum NRC-1 / Predição de função para TSSaRNAs (transcritos associados a sitios de início de transcrição) em Halobacterium salinarum NRC-1

Adam, Yagoub Ali Ibrahim 07 February 2019 (has links)
The Transcription Start Site Associated non-coding RNAs (TSSaRNAs) have been predicted across the three domain of life. However, still, there are no reliable annotation efforts to identify their biological functions and their underline molecular machinery. Therefore, this project addresses the question of what are the potential functions of TSSaRNAs regarding their roles in addressing the cellular functions. To answer this question, we aimed to accurately identify TSSaRNAs in the model organism Halobacterium salinarum NRC-1 (an Archean microorganism) that incubated at the standard growth condition. Consequently, we aimed to investigate TSSaRNAs structural stability in the term of the thermodynamic energies. Moreover, we attempted to functionally annotate TSSaRNAs based on Rfam functional classification of non-coding RNAs. Based on the statistical approach we developed an algorithm to predict TSSaRNA using next-generation RNA sequencing data (RNA-Seq). To perform structural annotation of TSSaRNAs, we investigated the structural stability of TSSaRNAs by modeling the secondary structures by minimizing the thermodynamic free energy. We simulated TSSaRNAs tertiary structures based on the secondary structures constrain using the Rosetta-Common RNA tool. The structures of the minimum free energy supposed to be biophysically stable structures. To investigate the higher order structures of TSSaRNAs, we studied the hybridization between TSSaRNAs and their cognate genes as part of RNA based regulation system. Also, based on our hypothesis that TSSaRNAs may bind to protein to trigger their function, we have investigated the interaction between TSSaRNAs and Lsm protein which known as a chaperone protein that mediates RNA function and involved in RNA processing. Our pipeline to perform the functional annotation of TSSaRNAs aimed to classify TSSaRNAs into their corresponding Rfam families based on two steps: either through querying TSSaRNAs sequences against the co-variance models of Rfam families or by querying the Rfam sequences against the co-variance models of the consensus secondary structures in TSSaRNAs. The results showed that the prediction algorithm has succeeded to identify a total of 224 TSSaRNAs that expressed in the same strand of the mRNAs and 58 TSSaRNAs that expressed as antisense of the mRNAs. The identified TSSaRNAs molecules showed a median length of 25 nucleotides. Regarding the structural annotation of TSSaRNAs, the results showed that most of TSSaRNAs possessed thermodynamically stable secondary structures and their tertiary structures were capable of forming more complex structures through binding with other biomolecules. About the formation of higher-order structures, we have observed that most of TSSaRNAs (92.2%) were capable of hybridizing into their cognate genes also 55 TSSaRNAs indicated putative interactions with Lsm protein. Furthermore, the computation docking experiments demonstrated the TSSaRNAs-Lsm complexes associated with favorable binding energy of a median of -542900 kcal mole -¹. Regarding the functional annotation of TSSaRNAs, the results showed that the majority of TSSaRNAs (42.05%) considered as potential cis-acting regulators such as cis-regulatory element and sRNAs, but still, there are potential trans-acting regulators to regulate distant molecules such as CRISPR and antisense RNA. Moreover, the results indicated that TSSaRNAs could trigger more complex function as a catalytic function such as Riboswitch or to play a role in the defense against a virus such as CRISPR. As a conclusion; based on the results of this study we could state that TSSaRNAs have several potential functions opening the experimental validation perspective. / Os RNA não codificantes associados ao sítio de início da transcrição - em inglês, transcription start site associated non-coding RNAs (TSSaRNA) - foram observados nos três domínios da vida. No entanto, sem esforço confiável de anotação para identificar suas funções biológicas e seus mecanismos moleculares. Portanto, esse projeto levanta a questão de quais são as funções em potencial dos TSSaRNAs a respeito de seus papeis nas funções celulares. Para responder esta questão, nós objetivamos em identificar de forma eficaz os TSSaRNAs no organismo modelo Halobacterium salinarum NRC-1 (um microrganismo do domínio Arqueia) encubado em uma condição de crescimento padrão. Consequentemente, nós investigamos a estabilidade estrutural dos TSSaRNAs em relação a energias termodinâmicas. Ainda, fizemos a anotação funcional dos TSSaRNAs baseado na classificação funcional Rfam dos RNAs não-codificantes. Baseada em uma abordagem estatística nós desenvolvemos um algoritmo para predizer TSSaRNA usando dados de sequenciamento de RNA de nova geração (RNA-Seq). Para investigar a estabilidade estrutural dos TSSaRNAs nós modelamos as estruturas secundárias minimizando a energia livre termodinâmica para alcançar a estrutura mais estável biofisicamente. Nós simulamos estruturas terciárias de TSSaRNAs baseado nas restrições das estruturas secundárias usando a ferramenta Rosetta-Common RNA. As estruturas de energia livre mínima seriam supostamente estruturas estáveis biofisicamente. Para investigar as estruturas de ordem superior (quaternária) dos TSSaRNAs, nós estudamos a hibridização entre os TSSaRNAs e seus genes cognatos como parte de um possível sistema de regulação baseado em RNA. Ainda, baseada na hipótese que os TSSaRNAs podem ligar à proteína para habilitar sua função, nós investigamos a interação entre TSSaRNAs e proteína Lsm que é conhecida por ser uma proteína chaperone que media função do RNA e está envolvida no processamento do RNA. Nosso pipeline para executar a anotação funcional dos TSSaRNAs objetivou classificar as TSSaRNAs em suas correspondentes classes Rfam baseado em dois passos: por meio de consulta das sequências TSSaRNA em relação a modelos de covariância de famílias Rfam ou por consulta de sequências Rfam em relação a modelos de covariância das estruturas de secundárias de consenso das estruturas secundárias nos TSSaRNAs. Os resultados mostraram que o algoritmo de detecção teve sucesso em identificar um total de 224 TSSaRNAs que expressaram na mesma direção dos mRNAs e 58 TSSaRNAs que expressaram no sentido oposto (antisenso) dos mRNAs. As moléculas TSSaRNAs identificadas mostraram um comprimento mediano de 25 nucleotídeos. A respeito da anotação estrutural dos TSSaRNAs, os resultados mostraram que a maioria dos TSSaRNAs possuíam estruturas secundárias estáveis termodinamicamente e suas estruturas terciárias foram capazes de formar estruturas mais complexas por meio de vínculos com outras biomoléculas. Quanto à formação de estruturas de maior de estruturas de alta ordem nos observamos que a maioria dos TSSaRNAs (92.2%) são capazes, pelo menos em princípio, de hibridizar em seus genes cognatos e, também, 55 TSSaRNAs evidenciaram interagir com a proteína Lsm. Além disso, os experimentos computacionais de docking demonstratam os complexos TSSaRNAs-Lsm associados com energia de ligação favorável com uma média de - 542900 kcal mole -¹. Quanto à anotação funcional dos TSSaRNAs, os resultados mostraram que a maioria dos TSSaRNAs (42.05%) podem ser consideradas potenciais reguladores atuando em cis tais como elemento cis-regulamentar e sRNAs, mas ainda há pontenciais reguladores atuando em trans para regular moléculas em loci distantes, tais como CRISPR e RNA antisense. Além disso, os resultados mostraram que TSSaRNAs podem potencialmente ativar funções mais complexas como uma função catalítica, tal como Riboswitch ou executar um papel de defesa contra vírus, tal como CRISPR. Como conclusão; baseado nos resultados desse estudo, nós podemos afirmar que TSSaRNAs possuem várias funções em potencial abrindo a perspecitiva de validação experimental.

Page generated in 0.0705 seconds