• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 34
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 164
  • 164
  • 68
  • 54
  • 51
  • 34
  • 29
  • 26
  • 19
  • 18
  • 15
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Molecular characterization of a porcine picobirnavirus RNA-dependent RNA polymerase

Phosiwa, Maanda Noaxe. January 2009 (has links)
Thesis (MSc (Veterinary Tropical Diseases, Veterinary Science))--University of Pretoria, 2008. / Includes bibliographical references. Also available in print format.
102

The construction of an infectious clone of grapevine virus A (GV A) /

Du Preez, Jacques. January 2005 (has links)
Thesis (MSc)--University of Stellenbosch, 2005. / Bibliography. Also available via the Internet.
103

Pokeweed antiviral protein inhibits brome mosaic virus RNA3 accumulation and translation in Vivo /

Gandhi, Rikesh. January 2005 (has links)
Thesis (M.Sc.)--York University, 2005. Graduate Programme in Biology. / Typescript. Includes bibliographical references (leaves 88-93). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url%5Fver=Z39.88-2004&res%5Fdat=xri:pqdiss &rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR11797
104

The identification of biologically important secondary structures in disease-causing RNA viruses.

Tanov, Emil Pavlov January 2012 (has links)
Magister Scientiae - MSc / Viral genomes consist of either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). The viral RNA molecules are responsible for two functions, firstly, their sequences contain the genetic code, which encodes the viral proteins, and secondly, they may form structural elements important in the regulation of the viral life-cycle. Using a host of computational and bioinformatics techniques we investigated how predicted secondary structure may influence the evolutionary dynamics of a group of single-stranded RNA viruses from the Picornaviridae family. We detected significant and marginally significant correlations between regions predicted to be structured and synonymous substitution constraints in these regions, suggesting that selection may be acting on those sites to maintain the integrity of certain structures. Additionally, coevolution analysis showed that nucleotides predicted to be base paired, tended to co-evolve with one another in a complimentary fashion in four out of the eleven species examined. Our analyses were then focused on individual structural elements within the genome-wide predicted structures. We ranked the predicted secondary structural elements according to their degree of evolutionary conservation, their associated synonymous substitution rates and the degree to which nucleotides predicted to be base paired coevolved with one another. Top ranking structures coincided with well characterized secondary structures that have been previously described in the literature. We also assessed the impact that genomic secondary structures had on the recombinational dynamics of picornavirus genomes, observing a strong tendency for recombination breakpoints to occur in non-coding regions. However, convincing evidence for the association between the distribution of predicted RNA structural elements and breakpoint clustering was not detected.
105

Avaliação da resposta imune contra as proteínas L e G do vírus respiratório sincicial humano. / Evaluation of the immune response against L and G proteins from human respiratory syncytial virus.

Yordanka Medina Armenteros 24 May 2012 (has links)
As formulações vacinais contra o Vírus Respiratório Sincicial Humano, HRSV, estão associadas à indução de eosinofilia pulmonar mediada por uma resposta de células TCD4+ Th2, após exposição ao HRSV selvagem. Foi identificado um peptídeo da proteína viral G, que modificado perde a capacidade de predispor à eosinofilia, tornando-o um imunógeno atraente. Células T CD8+ específicas para HRSV reduzem a resposta Th2, mediam resistência a desafio com o vírus, e estão relacionadas à redução dos sintomas. Assim, neste trabalho buscamos e identificamos epítopos de células TCD8+ na polimerase viral, utilizando programas de predição, imunização com peptídeos e avaliação da resposta celular. Também construímos vacinas de DNA contendo a seqüência nucleotídica do peptídeo da proteína G modificado. A caracterização da resposta imune estimulada por essas vacinas e por peptídeos purificados revelou que o plasmídio pTGMCTB, bem como os peptídeos GM e GMCTB, foram capazes de induzir anticorpos que, porém, não se mostraram neutralizantes de HRSV e protetores frente a desafio. / Vaccines against human respiratory syncytial virus (HRSV) are associated with pulmonary eosinophilia induction mediated by a TCD4+ Th2 response, after exposition to wild HRSV. A peptide from the viral protein G was identified to predispose to eosinophilia and loses this ability when mutated, making it an interesting immunogen. CD8+ T cells specific to HRSV reduce the Th2 response, mediate resistance to virus challenge, and are related to symptom-reduction. Thus, in the present work, we searched for and identified CD8+ T cell epitopes in the viral polymerase; using prediction programs, peptide immunization and evaluation of the cellular response. We also constructed DNA vaccines containing the nucleotide sequence of the mutated peptide from G protein mentioned above. The characterization of the immune response elicited by these vaccines and purified peptides showed that the pTGMCTB plasmid, as well as GM and GMCTB peptides were able to induce antibody response; however they are not neutralizing and protective against HRSV challenge.
106

An investigation into the replication biology of Helicoverpa armigera stunt virus

Short, James Roswell January 2011 (has links)
Tetraviruses are a family of small non-enveloped positive sense RNA viruses that exclusively infect members of the order Lepidoptera. Their replication biology is poorly studied because, with the exception of Providence virus (PrV), tetraviruses are unable to replicate in tissue culture cells. The overall aim of the research described in this thesis was to develop a fundamental understanding of the replication of tetraviruses, focussing on the site of replication within host cells and in particular, the subcellular localisation of the viral replicase. Helicoverpa armigera stunt virus (HaSV, Genus: Omegatetravirus) was chosen for this study because it is the only tetravirus for which the cDNAs have been shown to be infectious. In the absence of tissue culture cell lines susceptible to HaSV infection, the approach was to use confocal fluorescence microscopy to examine the subcellular localisation of the HaSV replicase fused to enhanced green fluorescent protein (EGFP) in mammalian and insect tissue culture cells. The replicase (with EGFP fused at its C-terminus) localised to punctate structures throughout the cytoplasm of transfected HeLa and Sf9 cells. These structures were then shown – using live cell imaging and time lapse photography – to behave similarly to cellular endocytic organelles and fluorescence partially overlapped with membranes containing the late endosomal marker protein CD63. Biochemical fractionation of Sf9 cells expressing the replicase via a recombinant baculovirus (as well as transfected HeLa and Sf9 cells expressing EGFP-replicase fusion proteins) demonstrated that the replicase was strongly associated with detergentresistant membranes (DRMs) in these cells. Deletion analysis of the replicase coding sequence revealed two regions involved in the generation of the punctuate structures. Firstly, the C-terminal half of the replicase RNAdependant RNA polymerase domain was found to be essential for targeting and the tight association with DRMs while the second region, within the Nterminal 44 amino acids, enhanced localisation through a combination of secondary structural elements and sequence-specific functions. A comparative immunofluorescence study on PrV, which replicates as a persistent infection in an insect midgut cell line, showed that the PrV replicase also localised to punctate structures in the cytoplasm. Biochemical fractionation showed that the replicase was also strongly associated with DRMs. This thesis describes the development of new experimental systems for the study of tetravirus replication biology and the data lead to the conclusion that the HaSV replicase associates with DRMs derived from alternate endocytic pathway organelles.
107

Structural Studies of NediV-IRES-Mediated Translation Initiation

Altomare, Clara Gilda January 2021 (has links)
Viruses require a host cell to replicate and proliferate; upon infection they appropriate host resources and molecular machines. Specifically, viruses use ribosomes of the host to translate the information in their genome. Some viruses with single-stranded RNA genomes contain highly structured non-coding regions of RNA called internal ribosome entry sites (IRESs) which are used to hijack the host’s ribosomes through a non-canonical cap-independent initiation pathway. Canonical translation initiation is a highly complex and regulated process: at least a dozen translation factors are necessary, and it is the rate-limiting step in eukaryotic translation. Viruses containing an IRES forgo canonical eukaryotic translation initiation factors and bypass some steps of canonical translation initiation by mimicking part of the host’s initiation machinery. The simplest among these IRESs are found in the intergenic region (IGR) of viruses in the family Dicistroviridae. These type IV IRESs from dicistroviruses have been structurally characterized in great detail in using the cricket paralysis virus (CrPV) and Israeli Acute Paralysis Virus (IAPV). To better understand how structure affects the function of these type IV IRESs, using single-particle cryo-electron microscopy (cryo-EM), we have characterized a recently discovered IRES found in the IGR of the genome of Nedicistrovirus (NediV). Four complexes that represent each step in the alternative translation initiation mechanism were prepared and analyzed to solve the 3D structure and characterize the mechanism by which the NediV-IRES captures host ribosomes. With this, we were able to understand how the shorter stem-loop V (SL-V) of NediV-IRES impacts the well-characterized interaction of SL-V with eukaryotic small subunit ribosomal protein 25 (eS25) (Landry et al., 2009), which is important for the IRES:40S complex formation. This shortened stem-loop has been shown to fold in a way that does not support stable binding to the small ribosomal subunit (40S) and subsequent recruitment of the large ribosomal subunit (60S). NediV-IRES, rather, relies on direct recruitment of the 80S ribosome, which has been seen more commonly at low concentrations of Mg²⁺ for CrPV-IRES (Petrov et al., 2016). Solved structures also suggest that upon loading, NediV-IRES skips the first eEF2-dependent pseudo-translocation step necessary to bind to the ribosomal P site without the need of eEF2. Because of their simplicity, these type IV IRESs represent a robust potential tool for cell-free and vector-driven translation. Due to these structural and mechanistic differences observed, we propose that NediV-IRES, along with the NediV-like Antarctic picorna-like virus 1 (APLV-1)-IRES (Lu, 2019), represents a novel type IV IRES subclass.
108

Hammerhead mediated self-cleavage of plant pathogenic RNAs / by Candice Claire Sheldon.

Sheldon, Candice Claire January 1992 (has links)
Bibliography : leaves 92-99. / v, 99, [37] leaves, [14] leaves of plates : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Biochemistry, 1992
109

Diversity and evolution of coronaviruses and astroviruses in bat, wildbirds and rodents

Chu, Ka-wing., 朱嘉永. January 2011 (has links)
Bats and birds are known to be the reservoirs of a number of zoonotic diseases. The capacity of flight and the diversity of these animals may make them special in maintaining and disseminating diverse viruses leading to instances of emerging zoonoses. In particular bats are increasingly recognized to be reservoirs of a wide range of viruses, including Nipah, Ebola and severe acute respiratory syndrome (SARS) coronaviruses. In most instances these viruses appear to establish long-term persistence in bats. In this thesis I report the identification of novel astroviruses from different insectivorous species of apparently healthy bats sampled in Hong Kong and in 11 provinces of Mainland China with high positive rates. Astroviruses are important causes of diarrhea in many animal species, including humans. This study revealed a remarkably high genetic diversity of bat astroviruses, which form novel distinct phylogenetic groups in the genus Mamastrovirus. Evidence for varying degrees of host restriction for bats astroviruses has been found. The finding of diverse astroviruses in Miniopterus bats captured within a single cave habitat in Hong Kong illustrates a very unusual virus host relationship between astroviruses and these bats. Surveillance of astroviruses in rodents, the only mammal with species numbers surpassing that of bats, has revealed a novel astrovirus in only 1.6 % of the faecal samples of urban brown rat (Rattus norvegicus) in Hong Kong in marked contrast with the prevalence and diversity of astroviruses in bats. Rat astrovirus was phylogenetically related to human astroviruses MLB1 which was detected from clinical samples from diarrhoeal patients in Hong Kong in this study. The unusually high positive rates of astroviruses in bats have been again highlighted. Avastroviruses were detected in 7.1% of the aquatic wild bird samples. Avastrovirus have also been detected in doves in Hong Kong, pond herons and a less whistling duck in Cambodia. A phylogenetic analysis of these novel astroviruses together with other previously known astroviruses revealed that avastrovirus can be divided into 3 monophyletic groups. On the other hand, avian coronaviruses was detected in 12.5% of the aquatic wild bird samples. Phylogenetic analysis of these avian coronaviruses has led us to suggest taxonomic separation of these viruses into two groups as gammacoronaviruses and deltacoronaviruses. Frequent interspecies transmissions of gammacoronaviruses between duck species were demonstrated. Analysis of the avian viral sequences and host mitochondrial DNA sequences suggested that some coronaviruses may have coevolved with birds from the same order. With the discoveries of coronaviruses and astroviruses in mammalian and birds, we now have a better understanding on the diversity and ecology of these two virus families in wildlife. These findings provide new insights into the ecology and evolution of these viruses in nature and have revealed possible inter-species transmissions of these viruses. The role of bats as a reservoir of viruses with potential to pose zoonotic threats to human health was also reinforced. Studies of the virus ecology in wildlife as demonstrated in this thesis will help formulating better strategies for controlling emerging diseases in the future. / published_or_final_version / Microbiology / Doctoral / Doctor of Philosophy
110

Enterovirus Non-structural Protein 3A Interactions with Sec12, an upstream Component of the COPII Secretory Pathway and Implications for Viral Replication

Nanda Kishore, R January 2015 (has links) (PDF)
Polioviruses, Coxsackieviruses, and Echoviruses belonging to the Picornaviridae family of positive-stranded, non-enveloped viruses, are highly infectious and associated with a range of illnesses in children from minor febrile illness to severe, potentially fatal conditions (eg, aseptic meningitis, encephalitis, paralysis and myocarditis). The viruses encodes 11 viral proteins along with the transient set of intermediates unique to viral propagation. 3A, one of the non-structural proteins, plays a crucial role in viral replication by anchoring the replication complex to the membrane vesicle and by recruiting essential cellular factors to the site of replication. It is an 89 amino-acid longprotein, and consists of a soluble N-terminal region and a hydrophobicC-terminal region. The soluble region contains two amphipathic alphahelices that form a hairpin, which are flanked by unstructured regions.Since, Enteroviruses have limited coding capacity,viral protein interactions with cellular proteins and lipids are essentialin viral replication, translation, polyprotein processing andpathogenesis. Understanding these interactions is essential inunderstanding the molecular mechanisms associated pathogenesis, andidentifying drug targets. Our studies are aimed at identifying hostfactors interacting with 3A protein and their functional significance invirus replication.We have identified thepotential 3A-interacting cellular candidate proteins using pull-down followed by liquid chromatography associated mass spectrometry. Gene ontology analysis revealed asignificant enrichment in cellular pathways, functions, and proteindomains in comparison with the control. Further studies were focused on Sec12 (guanine nucleotideexchange factor), ACBD3 (acyl-CoA binding domain containing 3) andPhosphatidylinositol 4-kinase beta (PI4KIIIß) interactions with the 3Aprotein, and their significance in viral replication. Sec12 (GEF) initiates the COPII vesicle-mediated ER-to-Golgi membrane trafficking by recruiting and activating the small GTP binding protein Sar1A to the membrane, which further recruits Sec23/24, cargo and Sec13/31 coat proteins to form functional COPII vesicles.We demonstrated that Sec12 and 3A interact directly in the ER through their C-terminal hydrophobic regions in oligomerization independent manner, leading toreduced the level of recruitment of individual COPII components such as Sar1A, Sec24A, and Sec31A to the membranes, thereby inhibiting virus replication. But in infected cells, other viral proteins such as 2B and 2BC likely stabilize the membrane-recruited Sar1A to support the viral replication. The viral proteins, ACBD3, PI4KIIIß interacted and co-localized with the Echovirus 3A protein.Knockdown of Sec12 or PI4KIIIß and expression of 3A or DN-Sar1A inhibited Echovirus replication, unlike proteins which support the COPII vesicle mediated ER-to-Golgi trafficking.Our results collectively indicate Sec12 is a crucial component in the anterograde membrane trafficking and is a novel host factor in Echovirus replication.

Page generated in 0.04 seconds