61 |
Étude des facteurs de transcription impliqués dans la signalisation de l’azote/nitrate / Study of the role of transcription factors involved in nitrogen/nitrate signalingSafi, Alaeddine 27 March 2018 (has links)
Les plantes prélèvent l’azote nécessaire à leur croissance essentiellement sous forme de nitrate. Pour faire face aux fluctuations spatio-temporelles de la disponibilité de cet ion dans les sols, ces organismes ont développé des mécanismes d’adaptation spécifiques à chaque situation. La réponse de la plante à l’azote met en jeu plusieurs voies de signalisations qui dépendent des scénarios de variations en azote du milieu. Deux grandes voies de signalisation sont étudiées en particulier dans cette thèse. La Primary Nitrate Response (ou PNR) qui correspond aux réponses rapides (minutes) et nitrate-spécifiques de la plante lors de la fourniture de Nitrate. La Nitrogen Starvation response (ou NSR) qui correspond à la réponse plus lente (jours) qui permet de pallier au manque d’azote dans le milieu. Bien que certains acteur moléculaires soient connus dans chacune des voies (PNR et NSR); i) la NSR est largement moins bien documentée que la PNR, ii) rien n’est connu concernant la coordination des 2 voies de signalisations. Au cours de ma thèse j’ai pu démontrer qu’un sous groupe de la famille GARP induit lors de la PNR est directement impliqué dans la régulation de la NSR (répression des gènes de transport à haute affinité de nitrate). Ceci fournit à la fois des nouveaux régulateurs de la NSR et un mécanisme de coordination entre les 2 voies de signalisation. Les phénotypes des plantes altérées dans l’expression des gènes de cette famille de facteurs de transcription ouvrent des perspectives d’améliorations biotechnologiques des plantes car ces dernières présentent des capacités de transport du nitrate bien supérieures aux plantes sauvages.Des résultats quant à la double localisation sub-cellulaire d’HRS1 et du rôle d’HRS1 dans le contrôle du statut redox des plantes sont présentés et discutés dans le contexte du modèle d’interaction entre PNR et NSR proposé précédemment. / Plants take up the nitrogen necessary for their growth mainly in the form of nitrate. To cope with spatio-temporal fluctuations in NO3- availability in soils, these organisms have developed adaptation mechanisms specific to each situation. Plant N response involves several signaling pathways that depend on the N variation scenarios of the medium. Two major signaling pathways are studied in this thesis. The Primary Nitrate Response (or PNR) which corresponds to the rapid (within minutes) and nitrate-specific responses of the plant when provided with Nitrate. The Nitrogen Starvation response (or NSR) which corresponds to the slower response (within days) which makes it possible to overcome the lack of N in the medium. Although some molecular actors are known in each of the pathways (PNR and NSR); i) the NSR is significantly less well documented than the PNR, ii) nothing is known about the coordination of the 2 signaling pathways. During my thesis I was able to demonstrate that a subgroup of the GARP transcription factor family induced during PNR is directly involved in the regulation of NSR (repression of transport genes with a very high nitrate affinity). This provides both new NSR regulators and a coordination mechanism between the 2 signaling pathways. The phenotypes recorded for plants altered in this transcription factors family open up perspectives for crop biotechnological improvements because they have nitrate transport capacities far superior to wild plants.Results regarding the subcellular dual localization of HRS1 and the role of HRS1 in controlling the redox status of plants are presented and discussed in the context of the previously proposed PNR-NSR interaction model.
|
62 |
Régulation et fonction des ferritines chez Arabidopsis thaliana : implication dans le développement racinaire / Regulation and function of ferritins in Arabidopsis thaliana : involvment in root developmentReyt, Guilhem 09 December 2013 (has links)
Le fer est un élément essentiel pour les cellules car il est le cofacteur de nombreuses protéines impliquées dans de multiples processus biologiques comme la photosynthèse et la respiration. Cependant, l'excès de fer peut être délétère pour la cellule, car il peut réagir avec l'oxygène pour former des espèces réactives de l'oxygène (ROS). Les ferritines sont des protéines chloroplastiques codées par le génome nucléaire permettant de stocker le fer en excès sous forme non toxique. Chez les végétaux, la synthèse des ferritines est majoritairement régulée au niveau transcriptionnel en réponse au fer contrairement aux animaux où elle est majoritairement régulée au niveau post-transcriptionnel. Toutefois, une régulation post-transcriptionnelle a été mise en évidence pour le gène de ferritine AtFer1. L'ARNm d'AtFer1 est déstabilisé en réponse à un stress oxydatif généré par un excès de fer. Cette régulation fait intervenir un élément cis nommé DST (DownSTream) localisé dans la région 3' transcrite non traduite de ce transcrit (3'UTR). Chez deux mutants précédemment identifiés comme agissant en trans (dst1 et dst2), cette régulation est affectée. Une caractérisation physiologique de ces mutants a permis de montrer que cette voie de dégradation est un mécanisme essentiel contrôlant la physiologie et la croissance de la plante en réponse à un stress oxydatif. D'autre part, l'expression d'AtFer1 ainsi que d'autres gènes codant des protéines chloroplastiques est régulée par un acteur de la machinerie de dégradation des ARNm, l'exoribonucléase XRN4. Ces ARNm codant des protéines chloroplastiques seraient localisés à la surface des chloroplastes. Cette localisation ferait intervenir des acteurs de la machinerie de dégradation des ARNm. La localisation subcellulaire du transcrit AtFer1 a été estimée par deux approches. L'ARNm d'AtFer1 a été visualisé par une technique d'imagerie, l'hybridation in situ révélé par fluorescence (FISH) (i). L'accumulation d'ARNm codant des protéines chloroplastiques a été évaluée dans deux fractions (chloroplastes isolés et feuilles entière) afin de savoir si certain ARNm se retrouvent enrichis dans la fraction chloroplastique (ii). Les résultats obtenus suggèrent que l'ARNm d'AtFer1 serait localisé autour des chloroplastes, cependant cette localisation ne semble pas être affectée chez le mutant xrn4. Enfin, ce travail a permis de caractériser la régulation et la fonction des ferritines dans les racines d'Arabidopsis. Le fer en excès induit la synthèse de ferritines dans les racines, AtFer1 puis AtFer3 sont les gènes de ferritines les plus exprimés dans cet organe. Les racines de plantes cultivées en excès de fer présentent des spots de fer dans les cellules de l'endoderme et du péricycle, là où l'expression des gènes AtFer1 et AtFer3 est retrouvée. Ces spots sont absents dans un triple mutant fer1-3-4. L'excès de fer diminue la longueur de la racine primaire de manière indépendante des ferritines. Par contre, l'excès de fer modifie la densité et l'élongation des racines latérales, ces deux modifications requièrent la présence des ferritines. Lors d'un excès de fer, les ferritines participent à la mise en place du gradient de H2O2 et de O2.- entre les zones de prolifération et de différentiations. Ce gradient est impliqué dans le contrôle la croissance racinaire. / Iron is essential for cells because it is the cofactor of many proteins involved in many biological processes such as photosynthesis and respiration. However, iron in excess can be deleterious to the cell due to its capacity to react with oxygen to form reactive oxygen species (ROS). Ferritins are plastidial proteins encoded by nuclear genes in order to store iron in a safe form. In plants, ferritin synthesis is mainly regulated at the transcriptional level in response to iron in contrast to animals, where it is mainly regulated at the post-transcriptional level.However, post-transcriptional regulation has been shown for the ferritin gene AtFer1. The AtFer1 mRNA is destabilized in response to oxidative stress generated by an excess of iron. This regulation involves a cis element called DST (DownSTream) located in the 3' untranslated region (3'-UTR) of this transcript. In two mutants previously identified as trans-acting (dst1 and dst2), this regulation is affected. Physiological characterizations of these mutants have shown this pathway is an important mechanism to control physiology and plant growth in response to oxidative stress.On the other hand, AtFer1 expression and expression of other genes encoding chloroplast proteins are regulated by a component of the mRNA decay machinery, the exoribonuclease XRN4. These mRNAs encoding chloroplast proteins would be localized on the surface of chloroplasts. This location would involve component of the mRNA decay machinery. The subcellular localization of AtFer1 mRNA was estimated by two approaches. AtFer1 mRNA was visualized by an imaging technique, fluorescent in situ hybridization revealed by (FISH) (i). Accumulation of mRNA encoding chloroplast proteins was evaluated in two fractions (purified chloroplasts and total leaves) to determine if some mRNAs are found enriched in the chloroplast fraction (ii) . Our results suggest that the AtFer1 mRNA is localized around chloroplasts, however, this location does not seem to be affected in the xrn4 mutant. Finally, this work has shown the regulation and function of ferritins in the roots of Arabidopsis. Iron in excess induces ferritin synthesis in roots, and AtFer1 then AtFer3 are the most expressed ferritin genes in this organ. Roots grown in iron excess present spots of iron in the cellular layers of the endoderm and pericycle, where AtFer1 and AtFer3 ferritin genes are expressed. This staining disappears in a triple fer1-3-4 ferritin mutant. Fe in excess decreases primary root length independently of the ferritins. In contrast, Fe excess mediated alteration of lateral root density and mean length requires ferritins, in particular at the highest Fe concentration tested. During an iron excess, ferritin are involved in the establishment of the H2O2 and O2.- gradient between proliferation and differentiation zones. This gradient is known to control of root growth.
|
63 |
Ląstelių membranų funkcionavimo tyrimai / Investigation of cell membranesKadziauskas, Jurgis Vidmantas 07 May 2009 (has links)
Hibridiniai baltymai, koduojami sulietų lamB ir lacZ genų susiriša su išvirkščiomis E.coli ląstelių plazminės membranos pūslelėmis. Sąveika su plazmine membrane priklauso nuo geno secA produkto buvimo. Hibridinių baltymų susirišimas su membrana priklauso nuo išorinės membranos baltymo LamB polipeptidinės grandinės ilgio. Aktyviosios deguonies formos, susidariusios fotosensibilizuojant eukariotų ląsteles lipofiliniu sensibilizatoriumi sukelia membranų pažaidas, padidina lipidų peoksidacijos lygį ir laktato dehidrogenazės išėjimą iš ląstelių. Vidinių ląstelių pažaidos sumažina ląstelių oksidoreduktazių aktyvumą ir ATP kiekį. Aktyviųjų deguonies formų susidarymas mitochondrijų vidinėje ertmėje buvo indukuotas rodaminu arba safraninu. Oksidacinio streso, sukelto mitochondrijų viduje, poveikis skyrėsi nuo įvairių ląstelės membranų fotopažaidų. Ląstelės atsakas į oksidacinį stresą mitochondrijų viduje priklausė nuo poveikio dozės. Pažaidos iki CD50 nesukėlė žymaus ląstelės gyvybingumo sumažėjimo. Didesnės fotopažaidos virš CD70 indukavo apoptozę, aktyvino kaspazę-3 ir iniciavo citochromo išėjimą iš mitochondrijų. / Hybrid proteins encoded by the fused lamB and lacZ genes were able to reconstitute to the membrane of the inside-out vesicles. The reconstitution of the cytoplasmic membrane vesicles was shown to be dependent on the gene sec A product. The interaction of the hybrid proteins with the membranes depended on the length of the LamB polypeptide chain. Production of ROS after photosensibilization with the lipophylic photosensitizer induced the damage to the cell membranes, enhanced lipid peroxidation and resulted in the leakage of lactate dehydrogenase from the cells. The damage of the inner cell membranes induced the decrease of the activity of cell oxidoreductases and the amount of ATP. For the stimulated production of ROS in the inner space of mitochondria, rhodamine123- and safranin-mediated photodynamic treatment was employed. Cell response to the oxidative insult in the mitochondrial interior was different from the response to the photodamage produced in other cellular membranes. Cell response to the oxidative stress in the mitochondrial interior was dose dependent. Damage up to CD50 did not reveal hallmarks of dead cells. Severe damage (beyond CD70) induced apoptosis following release of cytochrome c and caspase activation.
|
64 |
Functional analysis of the putative mitochondrial copper chaperone AtCox11Radin, Ivan 13 March 2015 (has links) (PDF)
Cox11 (cytochrome c oxidase 11) is an ancient and conserved protein family present in most respiring organisms. Studies of several family members, mainly in yeast and bacteria, have revealed that these proteins are in charge of Cu+ delivery to the respiratory complex IV (COX). Absence of Cox11 leads to a non-functional COX complex and a complete respiratory deficiency. Although it is assumed that homologues in other species perform the same function, experimental data supporting this notion are lacking. The aim of this work was to characterize the putative Arabidopsis homologue AtCox11 (encoded by locus At1g02410) and to determine its functions.
Comparison of AtCox11 with the well-studied ScCox11 in yeast revealed that the two proteins share high similarity in their sequences (32% amino acid identity) and in the predicted secondary structures. Surprisingly, despite this high similarity AtCox11 proved not to be able to functionally replace the yeast protein in ΔSccox11 yeast deletion strains. As presumed, AtCox11 is localized to mitochondria, probably tethered to the inner mitochondrial membrane with its C-terminus facing the intermembrane space.
The subsequent experimental work addressed the functions of AtCox11. To this end AtCOX11 knock-down (KD) and overexpression lines (OE) were generated and their impact on plant phenotype was investigated. KD lines that were obtained by artificial micro RNA technology, possess approximately 30% of the WT AtCOX11 mRNA levels. Overexpression resulting in 4-6 fold higher AtCOX11 mRNA levels, was achieved by placing AtCOX11 under the control of the 35S promoter.
Remarkably, both KD and OE plants had reduced levels of COX complex activity (~45% and ~80%, respectively) indicating that AtCox11 is, as expected, involved in COX complex assembly. The KD and OE plants exhibited reduced root lengths and pollen germination rates (compared to WT). As both processes are dependent on respiratory energy, these phenotypic changes seemingly result from the reduced COX activity. Interestingly, the short-root phenotype in OE plants was rescued by a surplus of copper in the media, whereas copper deficiency intensified the phenotype. By contrast, KD plants did not respond to changes of the copper concentration. This difference in the copper response between KD and OE plants hints at a different cause for the reduced COX activity. It is proposed that the concentration of AtCox11 in KD plants limits the efficient insertion of Cu+ into COX, independent of the available copper concentration. In OE plants, binding of the limited copper by the high AtCox11 level may lead to a copper deficiency for the copper chaperone AtHcc1 that is required to load copper to subunit AtCoxII. Indeed, addition of copper to the media was able to rescue the phenotype.
In line with these data, the analysis of the expression pattern of AtCOX11 revealed that it is expressed in tissues which require substantial mitochondrial and COX biogenesis to sustain their high metabolic and/or cell division rates. Furthermore AtCOX11 was shown to be up-regulated as part of the plant’s response to increased oxidative stress induced by the addition to the plant media of peroxides or inhibitors of respiratory complexes. The up-regulation of AtCOX11 in response to oxidative stress was corroborated with publicly available RNA microarray data and analysis of the AtCOX11 promoter, which revealed the presence of a number of potential oxidative stress responsive elements.
Taken together, the experimental results presented in this thesis support the conclusion that AtCox11 is a member of the conserved Cox11 protein family. Most probably, this mitochondrial protein participates in the assembly of the COX complex by inserting Cu+ into the CuB center of the AtCoxI subunit. In addition to this expected role, the data indicate that AtCox11 might participate in cellular oxidative stress response and defense via a yet unknown mechanism.
|
65 |
Diabète et cancer colorectal : épidémiologie et physiopathologie / Diabetes and colorectal cancer : epidemiological and physiopathological studiesMohsen Mroueh, Fatima 15 December 2017 (has links)
Le diabète est une dérégulation systémique chronique caractérisée par des perturbations métaboliques permanentes à l’origine de nombreuses complications, y compris le cancer. Le diabète augmente le risque du cancer colorectal (CRC) de 1,2 à 1,5 fois. Cependant, les voies moléculaires et cellulaires en jeu ne sont pas assez élucidées. Nos résultats témoignent d’une dérégulation de la voie AMPK/mTORC1 dans le diabète et le CRC avec une surexpression de la NADPH oxydase Nox4, augmentant ainsi la production de ROS. Ceci provoque un stress oxydatif qui s’élève en cas de diabète et contribue à la progression du CRC. De plus, nos résultats montrent que ce stress induit une altération de la voie de signalisation AMPK/mTORC1, aboutissant à une agressivité accrue du comportement des cellules cancéreuses du côlon et de la formation de polypes. Notre projet permet, d’une part, d’identifier de nouveaux mécanismes moléculaires impliqués dans la progression du CRC induite par le diabète et d’autre part, de développer des stratégies thérapeutiques efficaces pour inverser la progression du CRC chez les patients diabétiques. / Diabetes is a chronic systemic malfunction characterized by persistent metabolic disturbances that culminate in a high rate of complications to which cancer was recently annexed. In fact, diabetes inflates colorectal cancer (CRC) risk by 1.2-1.5 folds. However, the cellular and molecular pathways involved are not well understood. Our results show that AMPK/mTORC1 pathway is deregulated in both diabetes and CRC. This was paralleled by an elevation in the expression of the NADPH oxidase Nox4 leading to an increase in ROS production. Furthermore, our results show that oxidative stress, secondary to alteration in the level and activity of Nox4 is augmented in diabetes and contributes to the progression of CRC. The resulting oxidative stress further led to an alteration in the signaling of the AMPK/mTORC1 pathways culminating in an exacerbated aggressiveness in cancer cell behavior and colon polyp formation. Our project allows the identification of novel molecular mechanisms involved in diabetes-induced CRC progression and development of effective therapeutic strategies to reverse the progression of CRC in diabetic patients.
|
66 |
Fonctions oncogéniques de STAT5 : rôle dans la régulation du métabolisme oxydatif / Oncogenic functions of STAT5 : role in the regulation of oxidative metabolismBourgeais, Jérôme 06 May 2015 (has links)
Les protéines STAT5A et B sont des facteurs de transcription jouant un rôle important dans l'hématopoïèse normale et leucémique. Ce sont en effet des effecteurs essentiels d’oncogènes à activité tyrosines kinases, tels que BCR-ABL ou JAK2V617F responsables de la genèse d’hémopathies malignes. Ces oncogènes régulent la production de ROS (Reactive Oxygen Species) via l’activation de différentes voies de signalisation impliquées dans la prolifération et la survie cellulaire. Dans ce travail de thèse, nous montrons que l’activation oncogénique de STAT5, induite par BCR-ABL, favorise un stress oxydatif dans les cellules de Leucémie Myéloïde chronique (LMC), via la répression de l’expression des enzymes anti-oxydantes catalase et glutaredoxine-1 et la modulation potentielle de l’activité des NADPH oxydases. Nous montrons pour la première fois que l’effet pro-oxydant de STAT5 est régulé par la phosphorylation sur tyrosine de ces protéines et que les formes non phosphorylées et transcriptionnellement inactives exercent un effet anti-oxydant et protecteur contre le stress oxydatif, via des mécanismes non canoniques. Cette dualité de fonction est illustrée dans un modèle de co-culture de cellules de LMC et de cellules stromales médullaires, que nous avons développé dans le laboratoire afin de mimer le microenvironnement médullaire des cellules leucémiques. Dans ce modèle, nous montrons que le contact avec les cellules stromales permet d’inactiver STAT5 dans les cellules leucémiques et donc de promouvoir son activité anti-oxydante. Nous observons également un arrêt de prolifération et une entrée en phase G0 du cycle cellulaire des cellules leucémiques au contact des cellules stromales, ainsi qu’une résistance accrue de ces cellules à l’Imatinib, un inhibiteur de BCR-ABL. Ces données suggèrent un lien important entre activité anti-oxydante de STAT5, quiescence et chimio résistance des cellules leucémiques. / The Signal Transducer and Activator of Transcription factors 5A and B are two closely related STAT family members that play a major role in normal and leukemic hematopoiesis. STAT5 proteins are frequently activated in hematopoietic neoplasms and are targets of various tyrosine kinase oncogenes such as BCR-ABL and JAK2V617F. Both oncogenes were shown to stimulate the production of intracellular ROS (Reactive Oxygen Species) in leukemic cells and evidences for a cross talk between STAT5 and ROS metabolism have recently emerged. Herein, we demonstrate that sustained activation of STAT5 induced by BCR-ABL promotes ROS production in Chronic Myeloid Leukemia (CML) cells by repressing expression of two antioxidants, catalase and glutaredoxin1 and by possible functional interactions with NADPH oxidase complexes. We also provide compelling evidences that tyrosine phosphorylation regulate the pro-oxidant activity of STAT5 and that non phosphorylated STAT5 displays antioxidant properties and protection against oxidative stress via non-genomic effects. This dual function of STAT5 is also illustrated in an in vitro microenvironment model that we develop in our laboratory to analyze interactions between bone marrow stromal cells and CML cells. Using these coculture experiments, we show that STAT5 phosphorylation was reduced and its antioxidant activity enhanced in leukemic cells in contact with stromal cells. We also demonstrate in this model that leukemic cells stopped dividing, entered a quiescent G0 state and became resistant to Imatinib, a BCR-ABL kinase inhibitor. Collectively, these findings suggest an important link between antioxidant activity of STAT5, quiescence and resistance to chemotherapeutic agents in leukemic cells.
|
67 |
How cellular ATP/ADP ratios and reactive oxygen species affect AMPK signallingHinchy, Elizabeth January 2017 (has links)
Mitochondria are key generators of cellular ATP, vital to complex life. Historically, mitochondrial generation of reactive oxygen species (ROS) was considered to be an unregulated process, produced by dysfunctional mitochondria. More recently, mitochondrial ROS generated by complex I, particularly by the process of reverse electron transfer (RET), has emerged as a potentially biologically relevant signal that is tightly-regulated and dependent on mitochondrial status. ROS production by RET is reported to play a role in the innate immune response and lifespan extension in fruit flies. One way in which mitochondrial ROS may behave as a signal is by altering the activity of AMP-activated protein kinase (AMPK), a key metabolic sensor and regulator of cell metabolism, which is activated when cellular ATP levels decrease during energy demand. Mitochondria can signal to AMPK via the magnitude of the cellular ATP/AMP and ATP/ADP ratios, which alter in response to mitochondrial function. Our view is mitochondria may also signal to AMPK via ROS. Important studies have helped to clarify the role of exogenous or cytosolic ROS in AMPK regulation. However, the effects of mitochondrial ROS on AMPK activity, specifically that generated by complex I, remain unclear and is the main focus of this thesis. I characterized the effects of exogenous H2O2 on cellular AMPK activity, ATP/ADP ratios and cellular redox state in a cell model. I then compounded this with selective mitochondria generated ROS by the mitochondria-targeted redox-cycler, MitoParaquat (MPQ). AMPK activity appeared to correlate with decreasing cell ATP/ADP ratios, indicating that both sources of ROS primarily activate AMPK in an AMP/ADP-dependent mechanism. In parallel, I developed an approach for analyzing the redox state of candidate proteins, an important step in determining if a protein is directly regulated by ROS. I also initiated development of a cell model for studying the downstream effects of mitochondrial ROS production by RET, by expressing alternative respiratory enzymes in a mammalian cell line.
|
68 |
Contribution à l’étude des mécanismes de la glioprotection anti-oxydante et anti-inflammatoire sur des modèles in vitro et in vivo de neurodégénérescences et d'ischémie cérébrale : implication potentielle des globines endogènes du système nerveux central / Contribution to the study of the mechanisms of anti-oxidant and anti-inflammatory glioprotection on in vitro and in vivo models of neurodegeneration and cerebral ischemia : potential involvement of the endogenous globins of the system central nervous systemAmri, Fatma 12 December 2016 (has links)
Le stress oxydatif joue un rôle majeur dans la mort des cellules neuronales dans diverses conditions neuropathologiques. Cependant, les astrocytes réactifs, en produisant des facteurs neuroprotecteurs et antioxydants, sont capables de protéger les neurones contre le stress oxydatif. De ce fait, la protection des cellules gliales contre les facteurs nocifs, s’avère indispensable pour prévenir les dommages des cellules nerveuses. Les globines du cerveau, en particulier, la neuroglobine (Ngb) et l’hémoglobine (Hb), exprimées dans les cellules nerveuses, jouent un rôle important dans le métabolisme de l’oxygène. Récemment, il a été démontré, que ces protéines exercent des effets neuroprotecteurs dans les modèles expérimentaux de maladies neurodégénératives. Cependant, aucun effet glioprotecteur n’a été rapporté. Les objectifs de ce travail de thèse sont, de mettre en évidence les effets protecteurs de l’Hb et la Ngb dans les astrocytes en culture en présence d’un stress oxydant, et d’élucider les mécanismes intracellulaires mis en jeu. Nous avons démontré que l’Hb et la Ngb sont capables de promouvoir la survie des astrocytes en condition de stress oxydatif, et ce en réduisant significativement la surproduction des ROS, la surexpression des gènes pro-inflammatoires (IL-6, IL-33, iNOS), le dysfonctionnement mitochondrial et la stimulation de l’activité de la caspase-3/7. Nous avons montré aussi que les effets anti-apoptotiques impliquent l’activation des voies de signalisation ERK-MAPK. En outre, nous avons vérifié les effets glioprotecteurs sur un modèle animal de stress oxydatif chronique, les souris KO TP53INP1, ainsi que sur un modèle animal d’hypoxie. / Oxidative stress plays a major role in the death of neuronal cells under various neuropathological conditions. However, reactive astrocytes, by producing neuroprotective and antioxidant factors, are able to protect neurons against oxidative stress. Therefore, protecting glial cells from harmful factors is essential to prevent nerve cell damage. Brain globins, in particular, neuroglobin (Ngb) and hemoglobin (Hb), expressed in neurons and glial cells, play an important role in the metabolism of oxygen. Recently, it has been demonstrated that these proteins exert neuroprotective effects in experimental models of neurodegenerative diseases. However, no glioprotective effect has been reported. The objectives of this thesis work are to demonstrate the protective effects of Hb and Ngb in cultured astrocytes in the presence of oxidative stress and to elucidate the intracellular mechanisms involved. We have demonstrated That Hb and Ngb are able to promote the survival of astrocytes under oxidative stress conditions by significantly reducing over-production of ROS, overexpression of pro-inflammatory genes (IL-6, IL-33, iNOS) Mitochondrial dysfunction and stimulation of caspase-3/7 activity. We have also shown that anti-apoptotic effects involve the activation of ERK-MAPK signaling pathways. In addition, we verified the glioprotective effects on an animal model of chronic oxidative stress, KO mice TP53INP1, as well as on an animal model of hypoxia.
|
69 |
Obstacle Detection for Indoor Navigation of Mobile RobotsIslam Rasel, Rashedul 14 August 2017 (has links) (PDF)
Obstacle detection is one of the major focus area on image processing. For mobile robots, obstacle detection and collision avoidance is a notorious problem and is still a part of the modern research.
There are already a lot of research have been done so far for obstacle detection and collision avoidance. This thesis evaluates the existing various well-known methods and sensors for collision free navigation of the mobile robot. For moving obstacle detection purpose the frame difference approach is adopted. Robotino® is used as the mobile robot platform and additionally Microsoft Kinect is used as 3D sensor. For getting information from the environment about obstacle, the 9-built-in distance sensor of Robotino® and 3D depth image data from the Kinect is used. The combination is done to get the maximum advantages for obstacles information. The detection of moving object in front of the sensor is a major interest of this work.
|
70 |
Twist proteins as oxidative and hypoxic stress regulators / Etude des facteurs oncogéniques Twist dans la régulation du stress oxydatif et hypoxiqueKolodziejski, Jakub 11 January 2016 (has links)
Les facteurs de transcription Twist1 et Twist2 (famille Twist) jouent un rôle majeur dans le développement embryonnaire et dans la progression tumorale. Leur potentiel oncogénique dérive directement de la combinaison de leurs nombreuses activités développementales. Les gènes Twist peuvent notamment, en induisant la transition épithélio-mésenchymateuse (EMT), promouvoir l’invasion des cellules cancéreuses et participer de ce fait aux processus métastatique. De plus, en bloquant l’activité des voies de signalisation Rb et p53, ils peuvent inhiber les deux principaux programmes de sauvegarde cellulaire que sont l’apoptose et la senescence. Enfin, ils sont également impliqués dans la résistance des cellules cancéreuses aux agents chimio-thérapeutiques. En plus de ces nombreuses activités, nos données préliminaires nous ont amené à considérer un rôle de Twist dans la réponse au stress. Les cellules cancéreuses doivent croitre dans un environnement en perpétuel changement qui génère de nombreux types de stress. Seules les cellules capables de s’adapter, peuvent survivre et acquérir de nouvelles capacités les rendant plus agressives. La résistance au stress fait donc partie intégrante de la progression tumorale. Nos travaux révèlent que Twist en induisant une résistance au stress, plus particulièrement métabolique, est un acteur essentiel de l’acquisition d’u phénotype agressif des cellules cancéreuses. Dans une première étude, nous avons montré que Twist module le stress oxydatif, une condition très fréquemment retrouvée dans les tumeurs. Ainsi, nos résultats indiquent que l’expression de Twist provoque une réduction du taux d’espèces réactives de l’oxygène (ROS) intracellulaire. Cette activité a pour conséquence directe d’induire une résistance accrue à l’apoptose déclenchée par divers traitements. Nous avons par la suite caractérisé cette activité et mis en évidence un programme génétique contrôlé par Twist impliquant divers facteurs possédant des propriétés anti-oxydantes. Dans un second temps, nous nous sommes intéressés à un autre type de stress métabolique, l’hypoxie. L’hypoxie définie par un taux insuffisant d’oxygène, est retrouvée dans la plupart des tumeurs solides du fait de l’absence ou de l’anomalité de la vascularisation. L’hypoxie mène à la stabilisation d’un facteur de transcription, HIF1α. Cette protéine est essentielle à l’adaptation hypoxique et contrôle l’expression de nombreux gènes impliqués dans le métabolisme du glucose, le transport de l’oxygène, l’angiogenèse ou l’apoptose. Dans les premiers temps d’hypoxie, l’effet d’adaptation induit par HIF1α est bénéfique pour les cellules. Cependant, si l’absence d’oxygène se prolonge, HIF1α, peut pousser les cellules vers la mort. Nos travaux démontrent que Twist est capable de rendre les cellules résistantes à une hypoxie prolongée. De plus, cette activité de protection contre le stress hypoxique agit via un effet paracrine. Enfin, nos données suggèrent que cet effet est médié par une interaction directe entre les protéines Twist et HIF1α. Au final, cette étude indique que l’expression de Twist dans les cellules cancéreuses, en conférant une résistance accrue à l’environnement hypoxique, joue un rôle essentiel dans l’adaptation au stress et à l’acquisition de nouveaux phénotypes agressifs. En résumé, L’objectif principal de ma thèse était de mettre en évidence de nouvelles propriétés cellulaires des oncogènes de la famille Twist. Nos résultats démontrent que Twist par ses capacités à contrôler le stress métabolique, permet à la cellule cancéreuse de mieux s’adapter et donc survivre dans un environnement en constante évolution. Nos travaux renforcent donc la notion de l’importance de ces facteurs dans la progression tumorale. / Twist1 and Twist2 are related transcription factors that play major roles both during embryonic development and in several pathologies, including cancer. Twists' oncogenic potential arises from a combination of their multiple functions in development. Notably, both Twist induce epithelial-to mesenchymal transition, thus promoting tumour invasiveness and possibly conferring to cells self-renewal properties. Furthermore, through disruption of both Rb- and p53-driven pathways, Twist override two major oncogene-induced fail-safe programs, namely senescence and apoptosis, thereby promoting malignant conversion. Twist has also been reported to participate in acquisition of drug resistance and in promotion of neo-angiogenesis.Current knowledge of pleiotropic activities of Twist prompted us to postulate that these factors may be major regulators of stress response. Cancer cells survive and grow within a continuously changing environment that creates multiple stresses to which they must adapt in order to survive and strive. Such adaptations often give rise to the acquisition of an aggressive phenotype. Consistent with this hypothesis, we recently unveiled new activities of Twist proteins that are related to stress response. We have shown that Twist regulates response to oxidative stress, a condition exacerbated in cancer by stimuli such as inflammation, increased cellular metabolism and changes in tumour oxygenation. Our work has contributed to the understanding of molecular mechanisms through which Twist diminishes cellular ROS and thus participates in the escape from apoptosis and senescence. In the first part of my thesis, I worked on the antioxidant activity of Twist and described its molecular mechanisms.The second part of my work addressed the impact of Twist proteins on cellular response to hypoxia that is insufficient oxygen supply, frequently found in solid tumours. Cellular response to hypoxic stress relies on stabilization and activation of HIF1α, a key transcriptional mediator of the hypoxic response, regulating numerous genes involved in glucose metabolism, oxygen transport, angiogenesis, cell growth and apoptosis. HIF1α is beneficial for cancer cells in response to short hypoxic episodes, however its sustained activation in case of prolonged hypoxia may push cancer cells towards apoptosis. In this context, we have shown that Twist protects cancer cells from hypoxia-induced apoptosis. We have discovered HIF1α and Twist physically interact, suggesting a possible mechanistic basis for Twist's protective effect. These results led us to postulate that Twist plays a role in cellular response to hypoxia and thus participates in cancer cell adaptation and acquisition of aggressive phenotypes triggered by lack of oxygen.Our results reinforce the notion that Twist factors are major cellular stress modulators that might be important for adaptation of cancer cells to changing conditions in the process of tumour progression.
|
Page generated in 0.0273 seconds