Spelling suggestions: "subject:"racemization"" "subject:"racemizations""
21 |
Understand the inversion mechanism of P-stereogenic compound using kinetic studies and in silico modeling / Mécanisme d'inversion du phosphore : comprendre l'inversion des atomes de phosphore stéréogéniques à l'aide d'études cinétiques et de modélisation in silicoJavierre, Guilhem 16 January 2018 (has links)
La thèse consiste en l'étude de la racémisation d'hydrogéno-phénylphosphinates d'alkyle, des molécules centrées sur un phosphore stéréogénique. Pour cela, nous avons synthétisé les composés d'intérêt puis étudié leur cinétique de racémisation en utilisant l'HPLC chirale et la RMN du phosphore. La première étude théorique (SMD//M06-2X/6-31++G**) sur l’énantiomérisation d’un phosphinate d’alkyle après une SN2 par un alcool a montré comme mécanisme le plus favorable une syn-addition de l’alcool sur la double liaison P=O du phosphinate à l’opposé du groupement alkoxy. Les études cinétiques d’inversion du phosphinate d’éthyle dans l’éthanol à reflux ont montré une barrière de 135 kJ.mol-1 en moyenne, en excellent accord avec ce modèle (136 kJ.mol-1). L’ajout de base lors de l’étude cinétique ont montré une accélération de l’inversion avec une barrière maximum mesurée à 121,5 kJ.mol-1 montrant un effet de catalyse basique. Les modèles cinétiques et théoriques réalisés à ce jour ont suggéré que la base activerait l’alcool pour faciliter son addition. Les premiers résultats sur l’influence du groupement alkyle ont montré une dépendance globale de l’inversion à la taille du groupement, mais certains modèles DFT, notamment avec l’adamantyle, n’étaient pas en accord avec cette hypothèse. / This thesis is about the racemization of alkyl hydrogeno-phenylphosphinate, a molecule centered on a stereogenic phosphorus atom. We have synthetized compounds of interest, and studied their kinetic of racemization with chiral HPLC and phosphorus NMR. The first theoretical study (SMD//M06-2X/6-31++G**) about the enantiomerization of alkyl phosphinate after an SN2 with an alcohol have shown that the most favored mechanism was a syn-addition of the alcohol onto the double bond P=O on the opposite side of the alkoxy group. Kinetic studies with ethyl phosphinate in ethanol under reflux have shown an inversion barrier around 135 kJ.mol-1, in excellent agreement with this model (136 kJ.mol-1). The addition of a basic compound during kinetic measurements has shown a decreasing of the barrier to 121.5 kJ.mol-1, showing a catalytic effect. Kinetic and theoretical models have suggested that the mechanism would go through an activation of the alcohol by the basic compound which would facilitate its addition. The first tests about the nature of the alkyl group of phosphinate and alcohol have shown a general dependency of the barrier with the hindrance, but some DFT models, especially with adamantyl, have been in disagreement with this hypothesis.
|
22 |
Mechanism of Chirality Conversion by Grinding Crystals -Ostwald Ripening vs Crystallization of Chiral Clusters-Uwaha, Makio, Katsuno, Hiroyasu 10 February 2009 (has links)
No description available.
|
23 |
Amino acids in ancient (Precambrian) rocks: their occurrence, abundance and degree of racemizationEngel, Michael H. January 1980 (has links)
No description available.
|
24 |
Ruthenium-Catalyzed Hydrogen Transfer Reactions : Mechanistic Studies and Chemoenzymatic Dynamic Kinetic ResolutionsWarner, Madeleine January 2013 (has links)
The main focus of this thesis lies on transition metal-catalyzed hydrogen transfer reactions. In the first part of the thesis, the mechanism for racemization of sec-alcohols with a ruthenium complex, Ru(CO)2Cl(η5-C5Ph5) was studied. The reaction between 5-hexen-2-ol and Ru(CO)2(Ot-Bu)(η5-C5Ph5) was studied with the aim to elucidate the origin of the slow racemization observed for this sec-alcohol. Two diastereomers of an alkoxycarbonyl complex, which has the double bond coordinated to ruthenium, were characterized by NMR and in situ FT-IR spectroscopy. The observed inhibition of the rate of racemization for substrates with double bonds provided further confirmation of the importance of a free coordination site on ruthenium for β-hydride elimination. Furthermore, we observed that CO exchange, monitored by 13C NMR using 13CO, occurs with both the precatalyst, Ru(CO)2Cl(η5-C5Ph5), and the active catalytic intermediate, Ru(CO)2(Ot-Bu)(η5-C5Ph5). It was also found that added CO has an inhibitory effect on the rate of racemization of (S)-1-phenylethanol. Both these observations provide strong support for reversible CO dissociation as a key step in the racemization mechanism. In the second part of this thesis, Ru(CO)2Cl(η5-C5Ph5) was combined with an enzymatic resolution catalyzed by a lipase, leading to several efficient dynamic kinetic resolutions (DKR). DKR of exocyclic allylic alcohols afforded the corresponding acetates in high yields and with excellent enantiomeric excess (ee). The products were utilized as synthetic precursors for α-substituted ketones and lactones. DKR of a wide range of homoallylic alcohols afforded the products in good to high yields and with high ee. The homoallylic acetates were transformed into 5,6-dihydropyran-2-ones in a short reaction sequence. Furthermore, DKR of a wide range of aromatic β-chloroalcohols afforded the products in high yields and with excellent ee. The β-chloro acetates were further transformed into chiral epoxides. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 5: Mansucript.</p>
|
25 |
Pacific and Atlantic coast mollusk shells chromatographic amino acid racemization kinetics and interlaboratory comparisons /Bakeman, Valerie R.. January 2006 (has links)
Thesis (M.S.)--University of Delaware, 2006. / Includes bibliographical references.
|
26 |
Application of Isoleucine Epimerization to Assess Terrestrial Contamination and Constrain the Duration and Effects of Aqueous Alteration of Carbonaceous Chondrite MeteoritesJanuary 2014 (has links)
abstract: Carbonaceous chondrites (CCs) present a unique opportunity for learning about the earliest organic chemistry that took place in our Solar System. The complex and diverse suite of meteoritic organic material is the result of multiple settings and physicochemical processes, including aqueous and thermal alteration. Though meteorites often inform origin-of-life discussions because they could have seeded early Earth with significant amounts of water and pre-biotic, organic material, their record of abiotic, aqueous, and organic geochemistry is of interest as well.
CC materials previously resided on asteroidal parent bodies, relic planetesimals of Solar System formation which never accreted enough material to develop long-lived, large-scale geological processes. These bodies were large enough, however, to experience some degree of heating due to the decay of radiogenic isotopes, and the meteorite record suggests the existence of 100-150 parent bodies which experienced varying degrees of thermal and aqueous alteration for the first several 10 Myr of Solar System history.
The first chapter of this dissertation reviews literature addressing aqueous alteration as an essential participant in parent body geochemistry, organic synthesis, or both (though papers which address both are rare). The second chapter is a published organic analysis of the soluble organic material of Bells, an unclassified type 2 chondrite. Analytical approaches to assess terrestrial contamination of meteorite samples are also reviewed in the first chapter to allow introduction in chapter 3 of kinetic modeling which rules out certain cases of contamination and constrains the timing of thermal and aqueous alteration. This is the first known application of isoleucine epimerization for either of these purposes. Chapter 4 is a kinetic study of D-allo-isoleucine epimerization to establish its behavior in systems with large, relative abundances of alloisoleucine to isoleucine. Previous epimerization studies for paleontological or geological purposes began with L-isoleucine, the only protein amino acid of the four isoleucine stereoisomers.
Kinetic model calculations using isoleucine stereoisomer abundances from 7 CR chondrites constrain the total duration of the amino acids' residence in the aqueous phase. The comparatively short timescales produced by the presented modeling elicit hypotheses for protection or transport of the amino acids within the CR parent body. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2014
|
27 |
Memory of Chirality in 1,4-Benzodiazepin-2-onesDeGuzman, Joseph Christopher 11 August 2006 (has links)
Memory of chirality (MOC) is an emerging strategy in asymmetric synthesis. It has been applied to enolate chemistry, reactions involving carbocation intermediates, and to radical systems. In this strategy the chirality of an enantiopure reactant is transferred to the dynamic chirality of a reactive intermediate to produce stereospecific product.
1,4-Benzodiazepin-2-ones have been described as a "privileged" structure in medicinal chemistry. In addition to their uses as anxiolytics (Valium ®) and anti-epileptic agents (Clonopin ®), they have shown activity as HIV Tat antagonist, ras farnesyltransferase inhibitors in cancer cells, and antiarrhythmic agents. Because of the utility of this scaffold in the area of medicinal chemistry, it has served as a template in libraries for tens of thousands of compounds. Despite the vast diversity of 1,4-benzodiazepin-2-ones, there are few routes to enantiomerically enriched 3,3-disubstituted benzodiazepines containing a "quaternary" stereogenic center. This research will discuss the stereochemical properties of 1,4-benzodiazepin-2-ones, and provide a novel approach to synthesize enantiomerically enriched "quaternary" benzodiazepines with stereogenic centers through MOC, without the use of external chiral sources. / Ph. D.
|
28 |
Quantitative Estimates of Time-Averaging in Brachiopod Shell Accumulations from a Holocene Tropical Shelf (SW Brazil)Carroll, Monica 06 August 2001 (has links)
Time-averaging, the mixing of fossils of different ages within a single bed, defines the limit of temporal resolution of the fossil record. Quantitative estimates of this resolution threshold have not been acquired for any group other than mollusks. This study provides the first quantitative estimates of time-averaging for brachiopods, extending our understanding of intrinsic, or group specific controls on this process. Estimates were obtained by direct dating of individual terebratulid brachiopod shells Bouchardia rosea (Mawe) collected from modern surficial shelly accumulations in the Southeast Brazilian Bight (SW Atlantic).
Using amino acid racemization dating calibrated with radiocarbon, 82 individual brachiopod shells, collected from four nearshore localities, were dated. The shells vary in age from modern to 3000 years, standard deviation = 680 years. The age distribution is significantly right-skewed (K3=2.48). At 50-year resolution, the temporal completeness is 75% for the last 1000 years and declines to 20% completeness for 1000-2000 yr. BP. Preservational quality (taphonomy) of modern (<50 yr.) shells is statistically indistinguishable from that of older shells, demonstrating that shell taphonomy is not a good predictor of within-assemblage relative age. These results conform to previously published results for mollusks.
Therefore, brachiopods can show considerable time-averaging and this time-averaging can be on a scale similar to aragonitic mollusks despite the apparent lack of robustness of calcitic brachiopod shells. This suggests that the brachiopod fossil record can be notably time-averaged, but estimates of this mixing cannot be reliably deciphered from the taphonomic condition of shells. / Master of Science
|
29 |
Study of Enantiomeric Discrimination and Enzyme Kinetics using NMR SpectroscopyReddy, U Venkateswara January 2013 (has links) (PDF)
Obtaining enantio pure drug molecules is a long standing challenge in asymmetric synthesis implying that the identification of enantiomers and the determination of enantiomeric purity from a racemic mixture are of profound importance. In achieving this target NMR spectroscopy has proven to be an excellent analytical tool. It is well known that normal achiral NMR solvents do not distinguish the spectra of enantiomers. On the other hand, the conversion of substrates to diastereomers using one of the enantiopure chiral auxiliaries, such as, chiral solvating agent, chiral derivatizing agent and chiral lanthanide shift reagent, circumvents this problem. The imposition of diasteomeric interactions circumvents this problem. There is a pool of chiral auxiliaries available in the literature, each of which is specific to molecules of certain functionalities and has its own advantages and limitations. These classical methods have two limitations as they demand the presence of a targeted functional group in the chiral molecule and utilize only chemical shifts to visualize enantiomers. On the other hand in chiral anisotropic medium, due to differential ordering effect, the order-sensitive NMR observables, viz. chemical shift anisotropies (∆σi), dipolar couplings (Dij) and for nuclei with spin >1/2 the quadrupolar couplings (Qi) have enormous power of exhibiting different spectrum for each enantiomer permitting their discrimination. Numerous weakly ordered chiral aligning media have been reported in the literature. Nevertheless there is a scarcity of water compatible medium. Research work presented in this thesis is focused on various aspects, such as, the discovery of new chiral aligning medium for the enantiodiscrimination of water soluble chiral molecules, potential utility of DNA liquid crystal for discrimination of amino acids, on-the-fly monitoring of enzyme kinetics and the preparation of novel composite liquid crystals, hydrogels and thin films. The derived results are discussed in different chapters.
Chapter 1 provides a brief introduction to NMR spectroscopy with special emphasis on the conceptual understanding of the tensorial interaction parameters, such as chemical shifts, scalar and dipolar couplings, quadrupolar couplings, effect of r.f pulses, basic introduction to 2D NMR experiments. Subsequently, a broad overview of the enantiomers, specification of their configurations, chirality without stereogenic carbon, chirality in molecules containing different atoms, are discussed. Following this a brief introduction to liquid crystals and their properties, their classification, their orientation in the magnetic field, order parameter are also discussed. The description on the chiral liquid crystals, the differential ordering effect, employment of the orientation dependent NMR interactions, utility of 2H NMR experiments for the visualization of enantiomers and the measurement of enantiomeric composition has been set out in brief.
Chapter 2: As far as the organo soluble chiral molecules is concerned (in solvents such as, chloroform, dioxane, tetrahydrofuran and dimethylformamide), it has been well established that an ideal choice of chiral liquid crystal for enantiodiscrimination is poly-�-benzyl-L-glutamate (PBLG). Nevertheless, there is a scarcity of weak aligning medium for water soluble chiral molecules. This chapter introduces the chiral liquid crystal derived from the polysaccharide xanthan, which has numerous applications. The detailed discussion on the preparation of polysaccharide xanthan mesophase is given. The appearance of the mesophse is established by detecting the quadrupole split doublet of dissolved water. Subsequently enantiodiscrimination power of this new medium has been investigated on deuterated D/L-Alanine and (R/S)-β-butyrolactone. For such a purpose the selective 2D-SERF (SElective ReFocussing) experiment has been employed. It has been convincingly demonstrated that the medium has wide applicability for the discrimination of enantiomers, enantiotopic directions in prochiral molecules, measurement of enantiomeric excess and the RDCs in medium sized molecules. The new medium is sustainable over a wide range of temperature and concentration of ingredients, the mesophase is reversible, reproducible, easy to prepare besides being cost effective. It is possible to have the controlled tuning of the degree of order for specific application.
Chapter 3: In this chapter the real discriminatory potential of DNA liquid crystalline phase has been explored. It is unambiguously established that; i) the fragmented DNA liquid crystal is able to differentiate between enantiomers of structurally different chiral amino acids; ii) the T1 (2H) values for L/D (alanine) is nearly equal indicating the similar dynamics for both the enantiomers, thus permitting the measurement of ee from the integral areas of the peaks of the contours of 2D spectrum; iii) the enantiotopic discrimination in prochiral compounds has also been successfully explored. Furthermore the analyses of NMR results yielded fruitful information on the analytical potential of DNA chiral liquid crystal, such as, (a) the chiral discrimination is effective on a large range of amino acids with spectral differences ΔΔʋQ‘s and ΔʋQ‘s varying from 80 to 338 Hz, and 50 to 900 Hz respectively; (b) the discrimination phenomenon remain active irrespective of the structure and the electronic nature (polarity) of the fourth substituent around the stereogenic center; (c) compared to an alkyl moiety, the presence of a terminal –OH or –SH group seems to slightly increase both the degree of alignment of the solute and the enantiodiscrimination efficiency compared to alanine; (d) The enantiodiscrimination can be detected easily not only on CD3 and CD groups, but also on CD2 sites exhibiting inequivalent diastereotopic directions; (e) discriminations with rather large differential ordering effect were obtained even for the sites that are situated far away from the asymmetric center; (f) The relative position of quadrupolar doublets from one 2H site to another can be reversed with regard to the absolute configuration (L/D).
Chapter 4: Racemases recognize a chiral substrate such as (L-Alanine) and convert it into its enantiomer, i.e., (D-Alanine) and vice versa. Alanine racemase plays a vital role for certain bacteria, providing D-Alanine for peptidoglycan cell-wall biosynthesis. Elucidating the mechanism of enzymatic racemization is crucial for designing new inhibitors that may be useful as a novel class of antibiotics. This requires techniques to discriminate L-and D-Alanine and follow their concentrations as a function of time, so that one can determine the kinetic parameters and study the effect of inhibitors. In this chapter the utility of DNA liquid crystal media for in situ and real-time monitoring of the interconversion of L-and D-alanine-d3 by alanine racemase from Bacillus stearothermophilus has been demonstrated. The enantiomeric excess has been measured at different time intervals to monitor the enzymatic racemization at different time intervals in pseudo 2D NMR. The study unambiguously ascertains the reliability and robustness of utility of NMR in chiral anisotropic phase for monitoring the enzymatic racemization. The method thus provides new mechanistic insight and a better understanding of enzymatic reactions, in particular for alanine racemase.
Chapter 5: In continuation with the development of weakly ordered liquid crystals, this chapter reports the spontaneous formation of composite graphene oxide (GO)/double stranded DNA (dsDNA) liquid crystals at higher concentrations of ingredients, and hydrogels at lower concentrations of ingredients, the process of which involves simple mixing in an aqueous phase has been demonstrated. The liquid crystalline phases and hydrogels have been characterized using optical polarized microscopy (OPM), scanning electron microscopy (SEM), Raman spectroscopy and 2H NMR spectroscopy. The observation of strong birefringence in the optical polarized microscope gives evidence for the formation of GO/dsDNA liquid crystals. The strong interaction between the dsDNA and GO was confirmed using Raman spectroscopic analysis. Furthermore, GO/dsDNA thin films have also been prepared and characterized using SEM and OPM. The GO/dsDNA thin film was prepared and its liquid crystal nature was established using OPM and 2H NMR. Importantly, the GO/dsDNA hydrogels were formed without any heat treatment to unwind dsDNA molecules and the porosity of hydrogels can be controlled by changing concentration of the dsDNA. This novel multifunctional composite liquid crystals and hydrogels of GO/dsDNA thus opens up new avenues for many applications like security papers, optical devices such as circular polarizers, reflective displays and drug delivery as well as tissue engineering using GO composite hydrogels.
|
30 |
Design and Synthesis of Mixed-Metal Supramolecular Complexes Incorporating Specialized Light Absorbing Units to Investigate Processes Relevant to Catalyst FunctionWagner, Alec T. 15 June 2015 (has links)
The goal of this research was to develop a series of mixed-metal supramolecular complexes with specialized light absorbing units to probe perturbation of excited-state properties by ligand deuteration and long-term complex stability via racemization of initially enantiopure light absorbing subunits. Varying bidentate polypyridyl terminal ligands (TL), bridging ligands (BL), reactive metal center (RM), or number of Ru(II) light absorbers (LA) tunes the electrochemical, spectroscopic, photophysical, and photochemical properties within the supramolecular architecture. Ru(II) monometallics of the design [(bpy)2Ru(prolinate)](PF6) utilize prolinate as a chiral directing ligand to impart chirality to the Ru(II) LAs in the synthesis of more sophisticated supramolecular complexes. Ru(II) monometallics of the design [(TL)2Ru(BL)](PF6)2 (TL = bpy or d8-bpy; BL = dpp or d10-dpp; bpy = 2,2′-bipyridine; dpp = 2,3-bis(2-pyridyl)pyrazine) covalently couple two TLs and one BL to a central Ru(II) metal center forming a LA subunit. Larger bi- and trimetallic complexes are formed by coupling an additional Ru(II), Rh(III), or Pt(II) metal center to an existing Ru(II) LA through a BL. Ru(II),Ru(II), Ru(II),Rh(III), and Ru(II),Pt(II) bimetallics of the design [(TL)2Ru(BL)Ru(TL)2](PF6)4, [(TL)2Ru(BL)RhCl2(TL′)](PF6)3, and [(TL)2Ru(BL)PtCl2](PF6)2 (TL/TL′ = bpy or d8-bpy; BL = dpp or d10-dpp) couple only one Ru(II) LA to a Ru(II), Rh(III), or Pt(II) metal center through the BL. Ru(II),Rh(III),Ru(II) trimetallics of the design [{(TL)2Ru(BL)}2RhCl2](PF6)5 (TL = bpy or d8-bpy; BL = dpp or d10-dpp) covalently couple two Ru(II) LAs to a central Rh(III) RM through polyazine BLs.
The complexes discussed herein are synthesized using a building block approach, permitting modification of the supramolecular architecture through multiple synthetic steps. Electrochemical analysis of the mono-, bi-, and trimetallic complexes displays several common features: a Ru-based HOMO and either a bridging ligand or Rh-based LUMO. TL and BL modification by ligand deuteration does not affect the electrochemistry of the Ru(II), Ru(II),Ru(II), Ru(II),Rh(III), or Ru(II),Rh(III),Ru(II) complexes. Likewise, utilizing a single enantiomer of the LA subunit does not modify the redox behavior of Ru(II), Ru(II),Pt(II), or Ru(II),Rh(III),Ru(II) complexes. All of the mono-, bi-, and trimetallic complexes are efficient light absorbers throughout the UV and visible with π→π* intraligand (IL) transitions in the UV and Ru(dπ)→ligand(π*) metal-to-ligand charge transfer (MLCT) transitions in the visible. Ligand deuteration does not affect the light absorbing properties of the complexes, while incorporation of chiral LA subunits imparts a preference for circularly polarized light (CPL) absorbance into supramolecular complexes. Photoexcitation of the Ru(dπ)→dpp(π*) 1MLCT results in near unity population of short-lived, weakly emissive Ru(dπ)→dpp(π*) ³MLCT excited state. In the Ru(II), Ru(II),Ru(II), and Ru(II),Pt(II) complexes, the 3MLCT excited state relaxes to the ground state by emission of a photon or vibrational relaxation processes. In the Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes, the 3MLCT excited state is efficiently quenched by intramolecular electron transfer to populate a non-emissive Ru(dπ)→'Rh(dσ*) metal-to-metal charge transfer (3MMCT) excited state. Utilizing a deuterated BL, the excited-state lifetimes and quantum yield of emission (Φem) are increased for Ru(II), Ru(II),Ru(II), Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes.
The Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes have previously been shown to be exceptional photochemical molecular devices (PMD) for photoinitiated electron collection (PEC). The ability of these complexes to undergo multiple redox cycles, efficiently absorb light, populate reactive excited states, and collect electrons at a reactive Rh metal center fulfills the requirements for H2O reduction photocatalysts. Photolysis of the Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes with 470 nm light in the presence of a sacrificial electron donor and H2O substrate yields photocatalytic H2 production. Varying the BL from dpp to d10-dpp in the bimetallic architecture results in enhanced, although relatively low, catalyst efficiency producing 40 ± 10 μL H2 with dpp and 80 ± 10 μL H2 with d10-dpp in a CH3CN solvent system after 48 h photolysis. The trimetallic architecture showed no enhancement in photocatalytic efficiency and produced 210 ± 20 μL H2 with dpp and 180 ± 20 μL H2 with d10-dpp in a DMF solvent system after 20 h photolysis. The Ru(II),Rh(III) and Ru(II),Rh(III),Ru(II) complexes' behavior differs in that the excited state lifetime is the most important factor for bimetallic catalyst functioning, but intramolecular electron transfer is the most important factor for the trimetallic photocatalysts.
Another important property to understand with these catalysts is their long-term stability in solution. In order for these mixed-metal complexes to be industrially useful, they must perform for long periods of time without degradation in the presence of H2O substrate and electron donors in solution. Previous examinations of Ru(II),Rh(III),Ru(II) photocatalysts have found that they can perform for ca. 50 h of photolysis, but are not as effective as the initial few hours. Special care was taken to synthesize enantiopure LA subunits and incorporate them into Ru(II),Pt(II) and Ru(II),Rh(III),Ru(II) architectures to study their photolytic stability by monitoring how long the complexes retained their chirality using electronic circular dichroism (ECD) spectroscopy. After photolyzing for longer than 200 hours with an LED light source, the quantum yield for racemization (Φrac) for the Ru(II),Pt(II) and Ru(II),Rh(III),Ru(II) architectures is 2.6 ⨉ 10⁻⁸ and 0.72 ⨉ 10⁻⁸ respectively. Also, by photolyzing in the presence of free bpy, the bi- and trimetallic complexes racemize via a non-dissociative trigonal twist mechanism.
This dissertation reports the detailed analysis of the electrochemical, spectroscopic, photophysical, and photochemical properties of a series of selectively deuterated [(TL)2Ru(BL)](PF6)2, [(TL)2Ru(BL)Ru(TL)2](PF6)4, [(TL)2Ru(BL)RhCl2(TL′)](PF6)3, and [{(TL)2Ru(BL)}2RhCl2](PF6)5 (TL = bpy or d8-bpy; BL = dpp or d10-dpp; bpy = 2,2′-bipyridine; dpp = 2,3-bis(2-pyridyl)pyrazine) supramolecular complexes and a series of [(bpy)2Ru(prolinate)](PF6), [(bpy)2Ru(dpp)](PF6)2, [(bpy)2Ru(dpp)PtCl2](PF6)2, and [{(bpy)2Ru(dpp)}2RhCl2](PF6)5 supramolecular complexes with enantiopure light absorbing subunits. The design of the supramolecular architecture and intrinsic properties of each subunit contribute to the function of these systems. The careful design, synthesis and purification, thorough characterizations, and experimentation have led to deeper understanding of the molecular properties required for efficient H2O reduction. / Ph. D.
|
Page generated in 0.0595 seconds