• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse de l'influence de la chromatine du locus des gènes de l'ARN ribosomal sur la réparation des dommages causés par les rayons UV chez Saccharomyces cerevisiae

Tremblay, Maxime January 2013 (has links)
La réparation par excision de nucléotides (NER) retire une grande variété de lésions à l’ADN. Elle s’opère grâce à la participation de plusieurs complexes multi-protéiques afin d’identifier et de réparer l’ADN endommagé dans divers contextes de chromatine et domaines nucléaires. Le nucléole est le domaine le plus transcriptionnellement actif et contient les gènes de l’ARN ribosomal, nécessaires à la formation de ribosomes fonctionnels. La structure de la chromatine particulière de ce locus, où des gènes d’ARN ribosomal ouverts et fermés coexistent, permet d’analyser l’impact de l’accessibilité aux dommages sur l’efficacité de la réparation par la NER. Les travaux présentés dans cette Thèse ont initialement analysés le rôle des gènes RAD4 et RAD34, pendant la NER dans les gènes ouverts et fermés de l’ADNr. Il a été observé que RAD4 est essentiel pour la réparation globale du génome dans ce locus. À l’inverse, RAD34 n’est nécessaire que pour la réparation couplée à la transcription des gènes de l’ARN ribosomal. En somme, malgré que ces deux protéines partagent des homologies de séquences, leurs rôles dans le processus de la NER au niveau du locus de l’ADNr sont distincts et complémentaires. La somme des observations de ce travail fourni des preuves que l’ADNr ouvert est réparé plus rapidement que l’ADNr fermé, ce qui implique qu’une forme ouverte de chromatine peut favoriser la réparation NER in vivo. Par la suite, l’impact des dommages sur la transcription par la polymérase à ARN I (pARN-I) fut aussi analysé afin de définir le destin de ces polymérases suite à la rencontre d’un dommage. En fait, des travaux in vitro tendaient à démontrer que la pARN-I est bloquée à un site de dommage de façon très stable. Les travaux de cette Thèse démontrent, par diverses techniques, qu'in vivo, la pARN-I tombe suite à la rencontre d’une lésion et est dégradée. Finalement, l’étude de l’impact de l’acétylation des histones sur l’efficacité de la réparation par la NER en utilisant le locus de l’ADNr comme modèle fut entamée. En fait, il a été postulé que l’acétylation des histones permettrait un déplacement des nucléosomes de la région endommagée afin d’initier la NER. En augmentant l’acétylation des histones dans l’ADNr, grâce à la délétion du gène SIR2, cette hypoThèse fut analysée.
2

Identificação e caracterização da expressão gênica das proteínas Rad23 e Rad4, da via de reparo por excisão de nucleotídeos, durante o ciclo evolutivo de Schistosoma mansoni

Silva, Camila Siqueira 24 February 2006 (has links)
DNA is often damaged by environmental agents which lead to the up-regulation of several genes involved in different repair pathways. The regulation of DNA repair is important for cell survival following exposure to DNA-damaging agents. Schistosoma mansoni is a parasite that undergoes several modifications in its complex life cycle, being exposed to a subset of DNA-damaging agents, such as the environment and host immune response, and therefore, such as many other organisms, it is likely to be provided for efficient repair mechanisms. Recently, studies have shown that Nucleotide Excision Repair (NER) consists in an indispensable mechanism for removing a broad spectrum of DNA lesions. In the current study, it was analyzed the gene expression of Nucleotide Excision Repair Factor 2 (NEF2) - SmRad23 and SmRad4, in different developmental stages of S. mansoni, as well as the expression level of these genes in S. mansoni adult worms treated with DNA-damaging agents. Together, the results have confirmed the expression of these two proteins in all of the evolutive stages studied of the parasite, and shown a differential expression in front of the treatment with the different chemical agents. Furthermore, it was revealed the correlation of these genes with their orthologues in other eukaryotes. Therefore, the presence of SmRad23 and SmRad4 in all of the developmental stages of S. mansoni, as well as their differential expression following exposition to DNA-damaging agents, suggest that the NER is an important repair pathway during the complex life cycle of this parasite. / O DNA é freqüentemente danificado por agentes ambientais que levam à ativação de vários genes envolvidos em diferentes vias de reparo. A regulação do reparo do DNA é importante para a sobrevida da célula mediante exposição a agentes causadores de dano. Schistosoma mansoni é um parasito que passa por várias modificações em seu complexo ciclo de vida, estando exposto a uma série de agentes lesivos ao DNA, tais como aqueles presentes no meio ambiente e na própria resposta imune do hospedeiro, e, portanto, assim como muitos outros organismos, é provável que seja provido de eficientes mecanismos de reparo. Recentemente, estudos têm demonstrado que a via de reparo por excisão de nucleotídeos (NER) consiste em um mecanismo indispensável em eucariotos para a remoção de um amplo espectro lesões no DNA. No presente estudo, foi analisada a expressão gênica do fator de reparo por excisão de nucleotídeos 2 (NEF2) - SmRad23 e SmRad4, em diferentes estágios de desenvolvimento de S. mansoni, assim como o nível de expressão destes genes em vermes adultos tratados com agentes lesivos ao DNA. Em conjunto, os resultados confirmaram a expressão dessas duas proteínas em todos os estágios evolutivos estudados do parasito, e mostraram uma expressão diferencial destes genes mediante tratamento com os diferentes agentes químicos. Além disso, foi revelada a correlação destes genes com seus ortólogos em outros eucariotos. Portanto, a presença de SmRad23 e SmRad4, em todos os estágios de desenvolvimento de S. mansoni, bem como sua expressão diferencial mediante exposição a agentes lesivos ao DNA, sugere que NER constitui uma importante via de reparo durante o complexo ciclo de vida deste parasito. / Mestre em Imunologia e Parasitologia Aplicadas
3

Caractérisation structurale et fonctionnelle des interactions impliquant TFIIH et la machinerie de réparation de l’ADN

Lafrance-Vanasse, Julien 09 1900 (has links)
La réparation de l’ADN par excision des nucléotides (NER) est un mécanisme capable de retirer une large variété de lésions causant une distorsion de la double hélice, comme celles causées par les rayons ultraviolets (UV). Comme toutes les voies de réparation de l’ADN, la NER contribue à la prévention de la carcinogénèse en prévenant la mutation de l’ADN. Lors de ce processus, il y a d’abord reconnaissance de la lésion par la protéine XPC/Rad4 (humain/levure) qui recrute ensuite TFIIH. Ce complexe déroule l’ADN par son activité hélicase et recrute l’endonucléase XPG/Rad2 ainsi que d’autres protéines nécessaires à l’excision de l’ADN. Lors de son arrivée au site de lésion, XPG/Rad2 déplace XPC/Rad4. TFIIH agit également lors de la transcription de l’ADN, entre autres par son activité hélicase. Outre cette similarité de la présence de TFIIH lors de la transcription et la réparation, il est possible de se demander en quoi les deux voies sont similaires. Nous nous sommes donc intéressés aux interactions impliquant TFIIH et la machinerie de réparation de l’ADN. Nous avons donc entrepris une caractérisation structurale et fonctionnelle de ces interactions. Nous avons découvert que Rad2 et Rad4 possèdent un motif d’interaction en nous basant sur d’autres interactions de la sous-unité Tfb1 de TFIIH. Par calorimétrie à titrage isotherme, nous avons observé que les segments de ces deux protéines contenant ce motif interagissent avec une grande affinité au domaine PH de Tfb1. Le site de liaison de ces segments sur Tfb1PH est très semblable au site de liaison du domaine de transactivation de p53 et au domaine carboxy-terminal de TFIIEα avec Tfb1PH, tel que démontré par résonance magnétique nucléaire (RMN). De plus, tous ces segments peuvent faire compétition les uns aux autres pour la liaison à Tfb1PH. Nous avons aussi démontré in vivo chez la levure qu’une délétion de Tfb1PH crée une sensibilité aux radiations UV. De plus, la délétion de multiples segments de Rad2 et Rad4, dont les segments d’interaction à Tfb1PH, est nécessaire pour voir une sensibilité aux rayons UV. Ainsi, de multiples interactions sont impliquées dans la liaison de Rad2 et Rad4 à TFIIH. Finalement, les structures des complexes Rad2-Tfb1PH et Rad4-Tfb1PH ont été résolues par RMN. Ces structures sont identiques entre elles et impliquent des résidus hydrophobes interagissant avec des cavités peu profondes de Tfb1PH. Ces structures sont très semblables à la structure de TFIIEα-p62PH. Ces découvertes fournissent ainsi un lien important entre la transcription et la réparation de l’ADN. De plus, elles permettent d’émettre un modèle du mécanisme de déplacement de XPC/Rad4 par XPG/Rad2 au site de dommage à l’ADN. Ces connaissances aident à mieux comprendre les mécanismes de maintient de la stabilité génomique et peuvent ainsi mener à développer de nouvelles thérapies contre le cancer. / The nucleotide excision repair pathway (NER) is a mechanism capable of removing a wide variety of helix-distorting lesions, such as those caused by ultraviolet irradiation (UV). As all DNA repair pathways, NER contributes to the prevention of carcinogenesis by preventing DNA mutation. During this process, the lesion is first recognized by the protein XPC/Rad4 (human/yeast), which then recruits TFIIH. This complex unwinds the DNA with its helicase activity and then recruits the endonuclease XPG/Rad2 and other proteins necessary for DNA excision. Upon arrival at the lesion site, XPG/Rad2 displaces XPC/Rad4. TFIIH also acts in DNA transcription, using its helicase activity. In addition to the similarity of the presence of TFIIH in transcription and DNA repair, it is possible to ask ourselves how the two pathways are similar. We were interested in the interactions involving TFIIH and the DNA repair machinery. We have therefore undertaken a structural and functional characterization of these interactions. We have found that Rad2 and Rad4 have a motif of interaction based on other interactions of the Tfb1 subunit of TFIIH. Using isothermal titration calorimetry, we found that segments of these two proteins containing this motif interact with high affinity to the PH domain of Tfb1. The binding site of these segments is very similar to Tfb1PH binding site of transactivation domain of p53 and the carboxyl-terminal domain of TFIIEα with Tfb1PH, as demonstrated by nuclear magnetic resonance (NMR). In addition, these segments can compete with each other for binding to Tfb1PH. We also demonstrated in vivo that deletion of Tfb1PH in yeast creates a sensitivity to UV irradiation. In addition, the deletion of multiple segments of Rad2 and Rad4, including segments of interaction Tfb1PH, is required to observe a sensitivity to UV. Thus, multiple interactions are involved in the binding of TFIIH to Rad2 and Rad4. Finally, the structures of the Rad2-Tfb1PH and Rad4-Tfb1PH complexes were solved by NMR. These structures are identical to each other and involve hydrophobic residues interacting with shallow grooves on Tfb1PH. These structures are very similar to the structure of TFIIEα-p62PH. These findings provide an important mechanistic link between transcription and DNA repair. In addition, they provide a model of the mechanism of the displacement of XPC/Rad4 by XPG/Rad2 at the damaged site. This knowledge helps to better understand the mechanisms of genomic stability and can lead to novel cancer therapies.
4

Caractérisation structurale et fonctionnelle des interactions impliquant TFIIH et la machinerie de réparation de l’ADN

Lafrance-Vanasse, Julien 09 1900 (has links)
La réparation de l’ADN par excision des nucléotides (NER) est un mécanisme capable de retirer une large variété de lésions causant une distorsion de la double hélice, comme celles causées par les rayons ultraviolets (UV). Comme toutes les voies de réparation de l’ADN, la NER contribue à la prévention de la carcinogénèse en prévenant la mutation de l’ADN. Lors de ce processus, il y a d’abord reconnaissance de la lésion par la protéine XPC/Rad4 (humain/levure) qui recrute ensuite TFIIH. Ce complexe déroule l’ADN par son activité hélicase et recrute l’endonucléase XPG/Rad2 ainsi que d’autres protéines nécessaires à l’excision de l’ADN. Lors de son arrivée au site de lésion, XPG/Rad2 déplace XPC/Rad4. TFIIH agit également lors de la transcription de l’ADN, entre autres par son activité hélicase. Outre cette similarité de la présence de TFIIH lors de la transcription et la réparation, il est possible de se demander en quoi les deux voies sont similaires. Nous nous sommes donc intéressés aux interactions impliquant TFIIH et la machinerie de réparation de l’ADN. Nous avons donc entrepris une caractérisation structurale et fonctionnelle de ces interactions. Nous avons découvert que Rad2 et Rad4 possèdent un motif d’interaction en nous basant sur d’autres interactions de la sous-unité Tfb1 de TFIIH. Par calorimétrie à titrage isotherme, nous avons observé que les segments de ces deux protéines contenant ce motif interagissent avec une grande affinité au domaine PH de Tfb1. Le site de liaison de ces segments sur Tfb1PH est très semblable au site de liaison du domaine de transactivation de p53 et au domaine carboxy-terminal de TFIIEα avec Tfb1PH, tel que démontré par résonance magnétique nucléaire (RMN). De plus, tous ces segments peuvent faire compétition les uns aux autres pour la liaison à Tfb1PH. Nous avons aussi démontré in vivo chez la levure qu’une délétion de Tfb1PH crée une sensibilité aux radiations UV. De plus, la délétion de multiples segments de Rad2 et Rad4, dont les segments d’interaction à Tfb1PH, est nécessaire pour voir une sensibilité aux rayons UV. Ainsi, de multiples interactions sont impliquées dans la liaison de Rad2 et Rad4 à TFIIH. Finalement, les structures des complexes Rad2-Tfb1PH et Rad4-Tfb1PH ont été résolues par RMN. Ces structures sont identiques entre elles et impliquent des résidus hydrophobes interagissant avec des cavités peu profondes de Tfb1PH. Ces structures sont très semblables à la structure de TFIIEα-p62PH. Ces découvertes fournissent ainsi un lien important entre la transcription et la réparation de l’ADN. De plus, elles permettent d’émettre un modèle du mécanisme de déplacement de XPC/Rad4 par XPG/Rad2 au site de dommage à l’ADN. Ces connaissances aident à mieux comprendre les mécanismes de maintient de la stabilité génomique et peuvent ainsi mener à développer de nouvelles thérapies contre le cancer. / The nucleotide excision repair pathway (NER) is a mechanism capable of removing a wide variety of helix-distorting lesions, such as those caused by ultraviolet irradiation (UV). As all DNA repair pathways, NER contributes to the prevention of carcinogenesis by preventing DNA mutation. During this process, the lesion is first recognized by the protein XPC/Rad4 (human/yeast), which then recruits TFIIH. This complex unwinds the DNA with its helicase activity and then recruits the endonuclease XPG/Rad2 and other proteins necessary for DNA excision. Upon arrival at the lesion site, XPG/Rad2 displaces XPC/Rad4. TFIIH also acts in DNA transcription, using its helicase activity. In addition to the similarity of the presence of TFIIH in transcription and DNA repair, it is possible to ask ourselves how the two pathways are similar. We were interested in the interactions involving TFIIH and the DNA repair machinery. We have therefore undertaken a structural and functional characterization of these interactions. We have found that Rad2 and Rad4 have a motif of interaction based on other interactions of the Tfb1 subunit of TFIIH. Using isothermal titration calorimetry, we found that segments of these two proteins containing this motif interact with high affinity to the PH domain of Tfb1. The binding site of these segments is very similar to Tfb1PH binding site of transactivation domain of p53 and the carboxyl-terminal domain of TFIIEα with Tfb1PH, as demonstrated by nuclear magnetic resonance (NMR). In addition, these segments can compete with each other for binding to Tfb1PH. We also demonstrated in vivo that deletion of Tfb1PH in yeast creates a sensitivity to UV irradiation. In addition, the deletion of multiple segments of Rad2 and Rad4, including segments of interaction Tfb1PH, is required to observe a sensitivity to UV. Thus, multiple interactions are involved in the binding of TFIIH to Rad2 and Rad4. Finally, the structures of the Rad2-Tfb1PH and Rad4-Tfb1PH complexes were solved by NMR. These structures are identical to each other and involve hydrophobic residues interacting with shallow grooves on Tfb1PH. These structures are very similar to the structure of TFIIEα-p62PH. These findings provide an important mechanistic link between transcription and DNA repair. In addition, they provide a model of the mechanism of the displacement of XPC/Rad4 by XPG/Rad2 at the damaged site. This knowledge helps to better understand the mechanisms of genomic stability and can lead to novel cancer therapies.

Page generated in 0.0477 seconds